88
Views
4
CrossRef citations to date
0
Altmetric
Articles

Gibbsian dynamics and ergodicity of magnetohydrodynamics and related systems forced by random noise

ORCID Icon
Pages 412-444 | Received 15 Dec 2017, Accepted 21 Jan 2019, Published online: 26 Feb 2019

References

  • Weinan, E., Mattingly, J. C., Sinai, Y. (2001). Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equation. Commun. Math. Phys. 224:83–106. DOI:10.1007/s002201224083.
  • Batchelor, G. K. (1982). The Theory of Homogeneous Turbulence. Cambridge: Cambridge University Press.
  • Yudovich, V. (1963). Non stationary flows of an ideal incompressible fluid. Zhurnal Vych Matematika 3:1032–1066. DOI:10.1016/0041-5553(63)90247-7.
  • Cao, C., Wu, J., Yuan, B. (2014). The 2D incompressible magnetohydrodynamics equations with only magnetic diffusion. SIAM J. Math. Anal. 46(1):588–602. DOI:10.1137/130937718.
  • Mattingly, J. C. (1998). The stochastic Navier-Stokes equation, energy estimates and phase space contraction. Ph.D. dissertation. Princeton University, Princeton.
  • Capiński, M., Peszat, S., (1997). Local existence and uniqueness of strong solutions to 3D stochastic Navier-Stokes equations. Nonlinear Differ. Equ. Appl. 4:185–200. DOI:10.1007/PL00001415.
  • Debussche, A. (2013). Ergodicity results for the stochastic Navier-Stokes equations: an introduction. In: Constantin, P., Debussche, A., Galdi, G. P., Ruzicka, M., Seregin, G. (Eds.) Topics in Mathematical Fluid Mechanics, Lecture Notes in Mathematics, 2073. Berlin, Heidelberg: Springer-Verlag, pp. 23–108.
  • Da Prato, G., Debussche, A. (2002). Two-dimensional Navier-Stokes equations driven by a space-time white noise. J. Funct. Anal. 196(1):180–210. DOI:10.1006/jfan.2002.3919.
  • Flandoli, F., Gozzi, F. (1998). Kolmogorov equation associated to a stochastic Navier-Stokes equation. J. Funct. Anal. 160(1):312–316. DOI:10.1006/jfan.1998.3321.
  • Barbu, V., Da Prato, G. (2007). Existence and ergodicity for the two-dimensional stochastic magneto-hydrodynamics equations. Appl. Math. Optim. 56(2):145–168. DOI:10.1007/s00245-007-0882-2.
  • Manna, U., Mohan, M. T. (2013). Two-dimensional magneto-hydrodynamic system with jump processes: well posedness and invariant measures. Commun. Stoch. Anal. 7:153–178. doi: 10.31390/cosa.7.1.09.
  • Majda, A. (2003). Introduction to PDEs and Waves for the Atmosphere and Ocean. Rhode Island, United States of America: American Mathematical Society.
  • Majda, A. J., Bertozzi, A. L. (2002). Vorticity and Incompressible Flow. Cambridge, United Kingdom: Cambridge University Press.
  • Larios, A., Pei, Y. (2017). On the local well-posedness and a Prodi-Serrin-type regularity criterion of the three-dimensional MHD-Boussinesq system without thermal diffusion. J. Differ. Equ. 263(2):1419–1450. DOI:10.1016/j.jde.2017.03.024.
  • Temam, R. (1997). Infinite-Dimensional Dynamical Systems in Mechanics and Physics. 2nd ed. New York, Berlin, Heidelberg: Springer-Verlag.
  • Eringen, A. C. (1966). Theory of micropolar fluids. J. Math. Mech. 16:1–18. DOI:10.1512/iumj.1967.16.16001.
  • Lukaszewicz, G. (1999). Micropolar Fluids, Theory and Applications. Boston: Birkhäuser.
  • Ahmadi, G., Shahinpoor, M. (1974). Universal stability of magneto-micropolar fluid motions. Int. J. Eng. Sci. 12(7):657–663. DOI:10.1016/0020-7225(74)90042-1.
  • Ortega-Torres, E. E., Rojas-Medar, M. A. (1999). Magneto-micropolar fluid motion: global existence of strong solutions. Abstr. Appl. Anal. 4(2):109–125. DOI:10.1155/S1085337599000287.
  • Rojas-Medar, M. A. (1997). Magneto-micropolar fluid motion: existence and uniqueness of strong solutions. Math. Nachr. 188(1):301–319. DOI:10.1002/mana.19971880116.
  • Da Prato, G., Zabczyk, J. (1996). Ergodicity for Infinite Dimensional Systems. Cambridge: Cambridge University Press.
  • Da Prato, G., Debussche, A., Temam, R. (1994). Stochastic Burgers’ equation. Nonlinear Differ. Equ. Appl. 1(4):389–402. DOI:10.1007/BF01194987.
  • Flandoli, F. (1994). Dissipativity and invariant measures for stochastic Navier-Stokes equations. Nonlinear Differ. Equ. Appl. 1(4):403–423. DOI:10.1007/BF01194988.
  • Ferrario, B. (1997). The Bénard problem with random perturbations: dissipativity and invariant measures. Nonlinear Differ. Equ. Appl. 4:101–121. DOI:10.1007/PL00001407.
  • Krylov, N., Bogoliubov, N. (1937). La théorie générale de la mesure dans son application a l’étude des systémes de la mécanique nonlinéaire. Ann. Math. 38:65–113. doi: 10.2307/1968511.
  • Yamazaki, K. (2016). Ergodicity of the two-dimensional magnetic benard problem. Electron. J. Differ. Equ. 2016:1–24.
  • Ferrario, B. (1997). Ergodic results for stochastic navier-stokes equation. Stochastics Reports 60(3–4):271–288. DOI:10.1080/17442509708834110.
  • Ferrario, B. (1999). Stochastic Navier-Stokes equations: analysis of the noise to have a unique invariant measure. Annali di Matematica pura ed Applicata. CLXXVII:331–347. DOI:10.1007/BF02505916.
  • Flandoli, F., Maslowski, B. (1995). Ergodicity of the 2-D Navier-Stokes equation under random perturbations. Commun. Math. Phys. 171:119–141. DOI:10.1007/BF02104513.
  • Kuksin, S., Shirikyan, A. (2012). Mathematics of Two-dimensional Turbulence. Cambridge, UK: Cambridge University Press.
  • Foias, C., Prodi, G. (1967). Sur le comportement global des solutions non-stationnaires des e’quations de Navier-Stokes en dimension 2. Rend. Semin. Mat. Univ. Padova 39:1–34.
  • Foias, C., Manley, O., Rosa, R., Temam, R. (2004). Navier-Stokes Equations and Turbulence. Cambridge, UK: Cambridge University Press.
  • E, W., Liu, D. (2002). Gibbsian dynamics and invariant measures for stochastic dissipative PDEs. J. Stat. Phys. 108(5/6):1125–1156.
  • Lee, J., Wu, M.-Y. (2004). Ergodicity for the dissipative boussinesq equations with random forcing. J. Stat. Phys. 117(5–6):929–973. DOI:10.1007/s10955-004-5711-9.
  • Yamazaki, K. (2019). Gibbsian dynamics and ergodicity of stochastic micropolar fluid system. Appl. Math. Optim. 79(1):1–40 DOI:10.1007/s00245-017-9419-z.
  • Constantin, P., Glatt-Holtz, N., Vicol, V. (2014). Unique ergodicity for fractionally dissipated, stochastically forced 2D Euler equations. Commun. Math. Phys. 330(2):819–857. DOI:10.1007/s00220-014-2003-3.
  • Bricmont, J., Kupiainen, A., Lefevere, R. (2001). Ergodicity of the 2D Navier-Stokes equations with random forcing. Commun. Math. Phys. 224(1):65–81. DOI:10.1007/s002200100510.
  • Mattingly, J. C. (2002). Exponential convergence for the stochastically forced Navier-Stokes equations and other partially dissipative dynamics. Commun. Math. Phys. 230(3):421–462. [Mismatch] DOI:10.1007/s00220-002-0688-1.
  • Odasso, C. (2006). Ergodicity for the stochastic complex Ginzburg-Landau equations. Ann. Inst. Henri Poincaré Probab. Stat. 42:417–454. DOI:10.1016/j.anihpb.2005.06.002.
  • Yamazaki, K. (2016). Exponential convergence of the stochastic micropolar and magneto-micropolar fluid systems. Commun. Stoch. Anal. 10:271–295. doi: 10.31390/cosa.10.3.02.
  • Mattingly, J. C. (1999). Ergodicity of 2D Navier-Stokes equations with random forcing and large viscosity. Commun. Math. Phys. 206(2):273–288. DOI:10.1007/s002200050706.
  • Hairer, M., Mattingly, J. C. (2006). Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing. Ann. Math. 164(3):993–1032. DOI:10.4007/annals.2006.164.993.
  • Mattingly, J. C., Pardoux, E. (2006). Malliavin calculus for the stochastic 2D Navier-Stokes equation. Commun. Pure Appl. Math. LIX59(12):1742–1790. DOI:10.1002/cpa.20136.
  • Bensoussan, A., Temam, R. (1973). Equations stochastiques du type Navier-Stokes. J. Funct. Anal. 13(2):195–222. DOI:10.1016/0022-1236(73)90045-1.
  • Sango, M. (2010). Magnetohydrodynamic turbulent flows: existence results. Phys. D 239(12):912–923. DOI:10.1016/j.physd.2010.01.009.
  • Sritharan, S. S., Sundar, P. (1999). The stochastic magneto-hydrodynamic system. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2:241–265. DOI:10.1142/S0219025799000138.
  • Sundar, P. (2010). Stochastic magneto-hydrodynamic system perturbed by general noise. Commun. Stoch. Anal. 8:413–437. doi: 10.31390/cosa.4.2.08.
  • Chueshov, I., Millet, A. (2010). Stochastic 2D hydrodynamical type systems: well posedness and large deviations. Appl. Math. Optim. 61(3):379–420. DOI:10.1007/s00245-009-9091-z.
  • Yamazaki, K. (2017). Smoothness of malliavin derivatives and dissipativity of solution to two-dimensional micropolar fluid system. Random Oper. Stoch. Equ. 25:131–153. doi: 10.1515/rose-2017-0011.
  • Yamazaki, K. (2017). Stochastic Hall-magneto-hydrodynamics system in three and two and a half dimensions. J. Stat. Phys. 166(2):368–397. DOI:10.1007/s10955-016-1683-9.
  • Yamazaki, K. (2016). Global martingale solution to the stochastic nonhomogeneous magnetohydrodynamics system. Adv. Differ. Equ. 21:1085–1116.
  • Yamazaki, K. (2016). Global martingale solution for the stochastic Boussinesq system with zero dissipation. Stoch. Anal. Appl. 34(3):404–426. DOI:10.1080/07362994.2016.1148615.
  • Treve, Y. M., Manley, O. P. (1982). Energy conserving Galerkin approximations for 2-D hydrodynamic and MHD Bénard convection. Phys. D 4:319–342. DOI:10.1016/0167-2789(82)90040-9.
  • Deugoue, G., Razafimandimby, P. A., Sango, M. (2012). On the 3-D stochastic magnetohydrodynamic-α model. Stochastic Process. Appl. 122:2211–2248. DOI:10.1016/j.spa.2012.03.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.