375
Views
18
CrossRef citations to date
0
Altmetric
Articles

On impulsive Hilfer fractional stochastic differential system driven by Rosenblatt process

& ORCID Icon
Pages 955-976 | Received 07 Mar 2019, Accepted 01 Jun 2019, Published online: 27 Jun 2019

References

  • Kilbas, A. A., Srivastava, H. M., Trujillo, J. J. (2006). Theory and Applications of Fractional Differential Equations. North-Holland: Elsevier Science.
  • Lakhel, E., McKibben, M. A. (2018). Existence of solutions for fractional neutral functional differential equations driven by fractional Brownian motion with infinite delay. Stochastics 90(3):313–329. DOI:10.1080/17442508.2017.1346657.
  • Podlubny, I. (1999). Fractional Differential Equations. London: Academic Press.
  • Biagini, F., Hu, Y., Oksendal, B., Zhang, T. (2008). Stochastic Calculus for Fractional Brownian Motion and Applications. London: Springer.
  • Mao, X. (1997). Stochastic Differential Equations and Applications. Chichester: Horwood.
  • Maslowski, B., Schmalfuss, B. (2004). Random dynamical systems and stationary solutions of differential equations driven by the fractional Brownian motion. Stoch. Anal. Appl. 22(6):1577–1607. DOI:10.1081/SAP-200029498.
  • Mishura, Y. S. (2008). Stochastic Calculus for Fractional Brownian Motion and Related Processes. Berlin: Springer.
  • Ouahra, M. A., Boufoussi, B., Lakhel, E. (2017). Existence and stability for stochastic impulsive neutral partial differential equations driven by Rosenblatt process with delay and Poisson jumps. Commun. Stoch. Anal. 11(1):99–117.
  • Prato, G. D., Zabczyk, J. (2014). Stochastic Equations in Infinite Dimensions. London: Cambridge University Press.
  • Hilfer, R. (Ed.) (2000). Applications of Fractional Calculus in Physics. Singapore: World Scientific.
  • Yang, M., Wang, Q. (2017). Existence of mild solutions for a class of Hilfer fractional evolution equations with nonlocal conditions. Fract. Calc. Appl. Anal. 20(3):679–705.
  • Gu, H., Trujillo, J. J. (2015). Existence of mild solution for evolution equation with hilfer fractional derivative. Appl. Math. Comput. 257:344–354. DOI:10.1016/j.amc.2014.10.083.
  • Furati, K. M., Kassim, M. D., Tatar, N. E. (2012). Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 64(6):1616–1626. DOI:10.1016/j.camwa.2012.01.009.
  • Ahmed, H. M., El-Borai, M. M. (2018). Hilfer fractional stochastic integro-differential equations. Appl. Math. Comput. 331:182–189. DOI:10.1016/j.amc.2018.03.009.
  • Rihan, F. A., Rajivganthi, C., Muthukumar, P. (2017). Fractional stochastic differential equations with Hilfer fractional derivative: Poisson jumps and optimal control. Discrete Dyn. Nat. Soc. 2017 Article ID 5394528, 1–11. DOI:10.1155/2017/5394528.
  • Guendouzi, T., Idrissi, S. (2012). Approximate controllability of fractional stochastic functional evolution equations driven by a fractional Brownian motion. Romai J. 8:103–117.
  • Han, J., Yan, L. (2018). Controllability of a stochastic functional differential equation driven by a fractional Brownian motion. Adv. Diff. Equ. 104:1–18.
  • Hu, Y., Lu, F., Nualart, D. (2012). Feynman-Kac formula for the heat equation driven by fractional noise with Hurst parameter H<12. Ann. Probab. 40:1041–1068. DOI:10.1214/11-AOP649.
  • Tamilalagan, P., Balasubramaniam, P. (2017). Approximate controllability of fractional stochastic differential equations driven by mixed fractional Brownian motion via resolvent operators. Int. J. Control 90(8):1713–1727. DOI:10.1080/00207179.2016.1219070.
  • Tudor, C. A. (2008). Analysis of the Rosenblatt process. ESAIM: Prob. Stat. 12:230–257. DOI:10.1051/ps:2007037.
  • Maejima, M., Tudor, C. A. (2013). On the distribution of the Rosenblatt process. Stat. Prob. Lett. 83:1490–1495. DOI:10.1016/j.spl.2013.02.019.
  • Shen, G. J., Ren, Y. (2015). Neutral stochastic partial differential equations with delay driven by Rosenblatt process in a Hilbert space. J. Korean Stat. Soc. 44(1):123–133. DOI:10.1016/j.jkss.2014.06.002.
  • Lakhel, E. H., McKibben, M. A. (2019). Controllability for time-dependent neutral stochastic functional differential equations with Rosenblatt process and impulses. Int. J. Control Autom. Syst. 17(10):1–12.
  • Maejima, M., Tudor, C. A. (2012). Self similar processes with stationary increments in the second Wiener chaos. Probab. Math. Stat 32:167–186.
  • Taqqu, M. S. (1979). Convergence of integrated processes of arbitrary Hermite rank. Z Wahrscheinlichkeitstheorie Verw. Gebiete 50(1):53–83. DOI:10.1007/BF00535674.
  • Abry, P., Pipiras, V. (2006). Wavelet-based synthesis of the Rosenblatt process. Signal Process 86(9):2326–2339. DOI:10.1016/j.sigpro.2005.10.021.
  • Leonenko, N. N., Anh, V. V. (2001). Rate of convergence to the Rosenblatt distribution for additive functionals of stochastic processes with long-range dependence. J. Appl. Math. Stoch. Anal. 14(1):27–46. DOI:10.1155/S1048953301000041.
  • Rosenblatt, M. (1961). Independence and dependence. In Proc. 4-th Berkeley Symposium on Math. Stat. II, pp. 431–443.
  • Sakthivel, R., Revathi, P., Ren, Y., Shen, G. (2018). Retarded stochastic differential equations with infinite delay driven by Rosenblatt process. Stoch. Anal. Appl. 36:304–323. https://doi.org/10.1080/07362994.2017.1399801,
  • Balasubramaniam, P., Kumaresan, N., Ratnavelu, K., Tamilalagan, P. (2015). Local and global existence of mild solution for impulsive fractional stochastic differential equations. Bull. Malays. Math. Sci. Soc. 38(2):867–884. DOI:10.1007/s40840-014-0054-4.
  • Ren, Y., Cheng, X., Sakthivel, R. (2014). Impulsive neutral stochastic functional integro-differential equations with infinite delay driven by fractional Brownian motion. Appl. Math. Comput. 247(15):205–212. DOI:10.1016/j.amc.2014.08.095.
  • Faria, T., Oliveira, J. J. (2017). Existence of positive periodic solutions for scalar delay differential equations with and without impulses. J. Dyn. Diff. Equat. 1–23. https://doi.org/10.1007/s10884-017-9616-0.
  • Hernández, E., O’Regan, D. (2012). On a new class of abstract impulsive differential equations. Proc. Amer. Math. Soc. 141(5):1641–1649. DOI:10.1090/S0002-9939-2012-11613-2.
  • Pierri, M., O’Regan, D., Rolnik, V. (2013). Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses. Appl. Math. Comput. 219(12):6743–6749. DOI:10.1016/j.amc.2012.12.084.
  • Gautam, G., Dabas, J. (2014). Mild solution for fractional functional integro-differential equation with not instantaneous impulse. Malay. J. Matematik 2(3):428–437.
  • Yu, X., Wang, J. (2015). Periodic boundary value problems for nonlinear impulsive evolution equations on Banach spaces. Commun. Nonlinear Sci. Numer. Simul. 22(1–3):980–989. DOI:10.1016/j.cnsns.2014.10.010.
  • Fu, X., Liu, X., Lu, B. (2015). On a new class of impulsive fractional evolution equations. Adv. Diff. Equ. 1:1–16.
  • Yan, Z., Lu, F. (2015). Existence results for a new class of fractional impulsive partial neutral stochastic integro-differential equations with infinite delay. J. Appl. Anal. Comput. 5:329–346.
  • Banas, J., Goebel, K. (1980). Measure of Noncompactness in Banach Space. New York: Marcel Dekker.
  • Rogovchenko, Y. N. (1997). Nonlinear impulsive evolution systems and applications to population models. J. Math. Anal. Appl. 207(2):300–315. DOI:10.1006/jmaa.1997.5245.
  • Agarwal, R., Meehan, M., O’Regan, D. (2001). Fixed Point Theory and Applications. New York: Cambridge University Press.
  • Marle, C. M. (1974). Measures et Probabilities. Paris: Hermann.
  • Ahmed, H. M. (2015). Semilinear neutral fractional stochastic integro-diferential equations with nonlocal conditions. J. Theor. Probab. 28(2):667–680. DOI:10.1007/s10959-013-0520-1.
  • Balasubramaniam, P., Saravanakumar, S., Ratnavelu, K. (2018). Study a class of hilfer fractional stochastic integrodifferential equations with Poisson jumps. Stoch. Anal. Appl. 36:1021–1036. DOI:10.1080/07362994.2018.1524303.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.