271
Views
9
CrossRef citations to date
0
Altmetric
Articles

Stochastic delay foraging arena predator–prey system with Markov switching

, & ORCID Icon
Pages 191-212 | Received 09 Mar 2018, Accepted 07 Oct 2019, Published online: 27 Nov 2019

References

  • Mandal, P. S., Banerjee, M. (2012). Stochastic persistence and stationary distribution in a holling–tanner type prey–predator model. Phys. A: Stat. Mech. Appl. 391(4):1216–1233. DOI: 10.1016/j.physa.2011.10.019.
  • Akcakaya, H. R., Arditi, R., Ginzburg, L. R. (1995). Ratio-dependent predation: an abstraction that works. Ecology 76(3):995–1004. DOI: 10.2307/1939362.
  • Heath, M. R., Speirs, D. C., Steele, J. H. (2014). Understanding patterns and processes in models of trophic Cascades. Ecol. Lett. 17(1):101–114. DOI: 10.1111/ele.12200.
  • Abrams, P. A. (1994). The fallacies of “ratio-dependent” predation. Ecology 75(6):1842–1850. DOI: 10.2307/1939644.
  • Arditi, R., Ginzburg, L. R. (1989). Coupling in predator-prey dynamics: ratio-dependence. J. Theor. Biol. 139(3):311–326. DOI: 10.1016/S0022-5193(89)80211-5.
  • Arditi, R., Ginzburg, L. R. (2012). How Species Interact: Altering the Standard View on Trophic Ecology. New York, NY: Oxford University Press, 204pp.
  • Hill, J. M., Weissburg, M. J. (2013). Predator biomass determines the magnitude of non-consumptive effects (nces) in both laboratory and field environments. Oecologia 172(1):79–91. DOI: 10.1007/s00442-012-2488-4.
  • Anderson, J. J. (2010). Ratio-and predator-dependent functional forms for predators optimally foraging in patches. Am. Nat. 175(2):240–249. DOI: 10.1086/649606.
  • Walters, C., Pauly, D., Christensen, V., Kitchell, J. F. (2000). Representing density dependent consequences of life history strategies in aquatic ecosystems: Ecosim II. Ecosystems 3(1):70–83. DOI: 10.1007/s100210000011.
  • Ahrens, R. N., Walters, C. J., Christensen, V. (2012). Foraging arena theory. Fish Fish. 13(1):41–59. DOI: 10.1111/j.1467-2979.2011.00432.x.
  • Li, H., Takeuchi, Y. (2011). Dynamics of the density dependent predator–prey system with Beddington–Deangelis functional response. J. Math. Anal. Appl. 374(2):644–654. DOI: 10.1016/j.jmaa.2010.08.029.
  • Mao, X., Sabanis, S., Renshaw, E. (2003). Asymptotic behaviour of the stochastic Lotka-Volterra model. J. Math. Anal. Appl. 287(1):141–156. DOI: 10.1016/S0022-247X(03)00539-0.
  • Bahar, A., Mao, X. (2004). Stochastic delay Lotka-Volterra model. J. Math. Anal. Appl. 292(2):364–380. DOI: 10.1016/j.jmaa.2003.12.004.
  • Mao, X., Yuan, C., Zou, J. (2005). Stochastic differential delay equations of population dynamics. J. Math. Anal. Appl. 304(1):296–320. DOI: 10.1016/j.jmaa.2004.09.027.
  • Mao, X. (2005). Delay population dynamics and environmental noise. Stoch. Dyn. 05(02):149–162. DOI: 10.1142/S021949370500133X.
  • Ji, C., Jiang, D., Shi, N. (2009). Analysis of a predator–prey model with modified Leslie–Gower and Holling-type II schemes with stochastic perturbation. J. Math. Anal. Appl. 359(2):482–498. DOI: 10.1016/j.jmaa.2009.05.039.
  • Lv, J., Wang, K. (2011). Asymptotic properties of a stochastic predator–prey system with holling II functional response. Commun. Nonlinear Sci. Numer. Simul. 16(10):4037–4048. DOI: 10.1016/j.cnsns.2011.01.015.
  • Liu, Q., Zu, L., Jiang, D. (2016). Dynamics of stochastic predator–prey models with holling II functional response. Commun. Nonlinear Sci. Numer. Simul. 37:62–76. DOI: 10.1016/j.cnsns.2016.01.005.
  • Zhang, X., Li, Y., Jiang, D. (2017). Dynamics of a stochastic holling type II predator–prey model with hyperbolic mortality. Nonlinear Dyn. 87(3):2011–2020. DOI: 10.1007/s11071-016-3172-8.
  • Ji, C., Jiang, D., Li, X. (2011). Qualitative analysis of a stochastic ratio-dependent predator–prey system. J. Comput. Appl. Math. 235(5):1326–1341. DOI: 10.1016/j.cam.2010.08.021.
  • Ji, C., Jiang, D. (2011). Dynamics of a stochastic density dependent predator–prey system with Beddington–Deangelis functional response. J. Math. Anal. Appl. 381(1):441–453. DOI: 10.1016/j.jmaa.2011.02.037.
  • Mao, X., Yuan, C. (2006). Stochastic Differential Equations with Markovian Switching. London: Imperial College Press.
  • Li, X., Gray, A., Jiang, D., Mao, X. (2011). Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching. J. Math. Anal. Appl. 376(1):11–28. DOI: 10.1016/j.jmaa.2010.10.053.
  • Li, X., Jiang, D., Mao, X. (2009). Population dynamical behavior of Lotka–Volterra system under regime switching. J. Comput. Appl. Math. 232(2):427–448. DOI: 10.1016/j.cam.2009.06.021.
  • Cai, Y., Mao, X. (2018). Stochastic prey-predator system with foraging arena scheme. Appl. Math. Model. 64:357–371. DOI: 10.1016/j.apm.2018.07.034.
  • Cai, S., Cai, Y., Mao, X. (2019). A stochastic differential equation SIS epidemic model with two independent Brownian motions. J. Math. Anal. Appl. 474(2):1536–1550. DOI: 10.1016/j.jmaa.2019.02.039.
  • Cai, Y., Cai, S., Mao, X. (2019). Analysis of a stochastic predator-prey system with foraging arena scheme. Stochastics. 1–30. DOI: 10.1080/17442508.2019.1612897.
  • Cai, S., Cai, Y., Mao, X. (2019). A stochastic differential equation sis epidemic model with two correlated Brownian motions. Nonlinear Dyn. 97(4):2175–2187. DOI: 10.1007/s11071-019-05114-2.
  • Mao, X., Marion, G., Renshaw, E. (2002). Environmental Brownian noise suppresses explosions in population dynamics. Stoch. Process. Their Appl. 97(1):95–110. DOI: 10.1016/S0304-4149(01)00126-0.
  • Takeuchi, Y., Du, N., Hieu, N., Sato, K. (2006). Evolution of predator–prey systems described by a Lotka–Volterra equation under random environment. J. Math. Anal. Appl. 323(2):938–957. DOI: 10.1016/j.jmaa.2005.11.009.
  • Zhang, X., Zou, X., Wang, K. (2015). Dynamics of stochastic holling II predator-prey under Markovian-switching with jumps. Filomat 29(9):1925–1940. DOI: 10.2298/FIL1509925Z.
  • Xu, R., Chen, L. (2002). Persistence and global stability for n-species ratio-dependent predator–prey system with time delays. J. Math. Anal. Appl. 275(1):27–43. DOI: 10.1016/S0022-247X(02)00212-3.
  • Gray, A., Greenhalgh, D., Mao, X., Pan, J. (2012). The SIS epidemic model with markovian switching. J. Math. Anal. Appl. 394(2):496–516. DOI: 10.1016/j.jmaa.2012.05.029.
  • Du, N., Kon, R., Sato, K., Takeuchi, Y. (2004). Dynamical behavior of Lotka–Volterra competition systems: non-autonomous bistable case and the effect of telegraph noise. J. Comput. Appl. Math. 170(2):399–422. DOI: 10.1016/j.cam.2004.02.001.
  • Mao, X. (2007). Stochastic Differential Equations and Applications. Horwood, Chichester: Elsevier.
  • Gray, A., Greenhalgh, D., Hu, L., Mao, X., Pan, J. (2011). A stochastic differential equation SIS epidemic model. SIAM J. Appl. Math. 71(3):876–902. DOI: 10.1137/10081856X.
  • Higham, D. J. (2001). An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43(3):525–546.
  • Mao, X. (2011). Numerical solutions of stochastic differential delay equations under the generalized Khasminskii-type conditions. Appl. Math. Comput. 217(12):5512–5524. DOI: 10.1016/j.amc.2010.12.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.