548
Views
7
CrossRef citations to date
0
Altmetric
Research Article

The existence and Hyers-Ulam stability of solution for almost periodical fractional stochastic differential equation with fBm

, , &
Pages 643-666 | Received 07 May 2020, Accepted 11 Sep 2020, Published online: 06 Oct 2020

References

  • Diethelm, K. , Ford, N. J. (2002). Analysis of fractional differential equations. J. Math. Anal. Appl. 265(2):229–248. DOI: 10.1006/jmaa.2000.7194.
  • de Oliveira, E. C. , Sousa, J. V. D. C. (2018). Ulam–Hyers–Rassias stability for a class of fractional integro-differential equations. Results Math . 73(3):111. DOI: 10.1007/s00025-018-0872-z.
  • Vanterler da C Sousa, J. , Oliveira, E. C. D. (2018). On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 60:72–91. DOI: 10.1016/j.cnsns.2018.01.005.
  • Vanterler da, J. , Sousa, C. , Oliveira, E. C. D. (2019). Leibniz type rule: ψ-Hilfer fractional operator. Commun. Nonlinear Sci. Numer. Simul. 77:305–311.
  • Agrawal, O. P. (2002). Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272(1):368–379. DOI: 10.1016/S0022-247X(02)00180-4.
  • Bai, Z. , Lü, H. (2005). Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311(2):495–505. DOI: 10.1016/j.jmaa.2005.02.052.
  • Delbosco, D. , Rodino, L. (1996). Existence and uniqueness for a nonlinear fractional differential equation. J. Math. Anal. Appl. 204(2):609–625. DOI: 10.1006/jmaa.1996.0456.
  • Kilbas, A. A. , Marichev, O. I. , Samko, S. G. (1993). Fractional Integral and Derivatives (Theory and Applications). Amsterdam: Gordan and Breach.
  • Leggett, R. W. , Williams, L. R. (1979). Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana Univ. Math. J . 28(4):673–688. DOI: 10.1512/iumj.1979.28.28046.
  • Podlubny, I. (1998). Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications . San Diego: Academic Press.
  • Baleanu, D. , Annamalai, A. , Kandasamy, B. , Arumugam, V. (2018). On neutral impulsive stochastic differential equations with Poisson jumps. Advances in Difference Equations, 2018:1–17.
  • Chaudhary, R. , Pandey, D. N. (2019). Existence results for a class of impulsive neutral fractional stochastic integro-differential systems with state dependent delay. Stochastic Anal. Appl . 37(5):865–892. DOI: 10.1080/07362994.2019.1621181.
  • Dabas, J. , Chauhan, A. , Kumar, M. (2011). Existence of the mild solutions for impulsive fractional equations with infinite delay. Int. J. Differ. Equ. 2011:1–20. DOI: 10.1155/2011/793023.
  • Fečkan, M. , Wang, J.-R. , Zhou, Y. (2011). On the new concept of solutions and existence results for impulsive fractional evolution equations. Dyn. Partial Differ. Equ. 8(4):345–361. DOI: 10.4310/DPDE.2011.v8.n4.a3.
  • Guo, Y. , Shu, X.-B. , Li, Y. , Xu, F. (2019). The existence and Hyers–Ulam stability of solution for an impulsive Riemann–Liouville fractional neutral functional stochastic differential equation with infinite delay of order 1 <β< 2. Boundary Value Problems 2019(1):1–18.
  • Ji, S. , Li, G. (2012). A unified approach to nonlocal impulsive differential equations with the measure of noncompactness. Adv. Differ. Equ. 2012(1):182. DOI: 10.1186/1687-1847-2012-182.
  • Kerboua, M. , Debbouche, A. , Baleanu, D. (2014). Approximate controllability of Sobolev type fractional stochastic nonlocal nonlinear differential equations in Hilbert spaces. Electron. J. Qual. Theory Differ. Equ . (58):1–16. DOI: 10.14232/ejqtde.2014.1.58.
  • Khan, H. , Chen, W. , Sun, H. (2018). Analysis of positive solution and Hyers-Ulam stability for a class of singular fractional differential equations with p-laplacian in Banach space. Math. Methods Appl. Sci. 41(9):3430–3440. DOI: 10.1002/mma.4835.
  • Mourad, K. , Fateh, E. , Baleanu, D. (2018). Stochastic fractional perturbed control systems with fractional Brownian motion and sobolev stochastic non local conditions. Collect. Math . 69(2):283–296. DOI: 10.1007/s13348-017-0207-5.
  • Niu, P. , Shu, X.-B. , Li, Y. (2019). The existence and Hyers-Ulam stability for second order random impulsive differential equations. Dyn. Syst. Appl . 28(3):673–690.
  • Xiao-Bao, S. , Xu, F. (2014). Upper and lower solution method for fractional evolution equations with order 1 <α< 2. J. Korean Math. Soc . 51(6):1123–1139.
  • Zada, A. , Ali, S. (2018). Stability analysis of multi-point boundary value problem for sequential fractional differential equations with non-instantaneous impulses. Int. J. Nonlinear Sci. Numer. Simul . 19(7–8):763–774. DOI: 10.1515/ijnsns-2018-0040.
  • Zada, A. , Ali, W. , Farina, S. (2017). Hyers-Ulam stability of nonlinear differential equations with fractional integrable impulses. Math. Meth. Appl. Sci . 40(15):5502–5514. DOI: 10.1002/mma.4405.
  • Zada, A. , Ali, W. , Park, C. (2019). Ulam’s type stability of higher order nonlinear delay differential equations via integral inequality of Grönwall-Bellman-Bihari’s type. Appl. Math. Comput. 350:60–65. DOI: 10.1016/j.amc.2019.01.014.
  • Zada, A. , Shaleena, S. , Li, T. (2019). Stability analysis of higher order nonlinear differential equations in β-normed spaces. Math. Meth. Appl. Sci. 42(4):1151–1166. DOI: 10.1002/mma.5419.
  • Zhang, X. , Huang, X. , Liu, Z. (2010). The existence and uniqueness of mild solutions for impulsive fractional equations with nonlocal conditions and infinite delay. Nonlinear Anal. Hybrid Syst. 4(4):775–781. DOI: 10.1016/j.nahs.2010.05.007.
  • Balasubramaniam, P. , Muthukumar, P. (2009). Approximate controllability of second-order stochastic distributed implicit functional differential systems with infinite delay. J. Optimiz. Theor. Appl . 143(2):225–244.
  • Favaron, A. , Lorenzi, A. (2003). Recovering a leading coefficient and a memory kernel in first-order integro-differential operator equations. J. Math. Anal. Appl. 283(2):513–533. DOI: 10.1016/S0022-247X(03)00281-6.
  • Klamka, J. , Wyrwał, J. (2016). Approximate controllability of stochastic nonlinear infinite dimensional systems. a short survey. In: 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR). IEEE, Miedzyzdroje, Poland, pp. 505–510. DOI: 10.1109/MMAR.2016.7575187.
  • Li, M. , Wang, M. , Zhang, F. (2006). Controllability of impulsive functional differential systems in Banach spaces. Chaos Solitons Fractals 29(1):175–181. DOI: 10.1016/j.chaos.2005.08.041.
  • Lu, L. , Liu, Z. , Bin, M. (2016). Approximate controllability for stochastic evolution inclusions of Clarke’s subdifferential type. Appl. Math. Comput. 286:201–212. DOI: 10.1016/j.amc.2016.04.020.
  • Mahmudov, N. I. (2003). Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces. SIAM J. Control Optimization 42(5):1604–1622. DOI: 10.1137/S0363012901391688.
  • Park, J. Y. , Balasubramaniam, P. , Kumaresan, N. (2007). Controllability for neutral stochastic functional integrodifferential infinite delay systems in abstract space. Numer. Funct. Anal. Optimization 28(11–12):1369–1386. DOI: 10.1080/01630560701563875.
  • Tamilalagan, P. , Balasubramaniam, P. (2017). Approximate controllability of fractional stochastic differential equations driven by mixed fractional Brownian motion via resolvent operators. Int. J. Control . 90(8):1713–1727. DOI: 10.1080/00207179.2016.1219070.
  • Wei, W. , Xiang, X. , Peng, Y. (2006). Nonlinear impulsive integro-differential equations of mixed type and optimal controls. Optimization 55(1–2):141–156. DOI: 10.1080/02331930500530401.
  • Cui, J. , Yan, L. (2011). Existence result for fractional neutral stochastic integro-differential equations with infinite delay. J. Phys. A: Math. Theor . 44(33):335201. DOI: 10.1088/1751-8113/44/33/335201.
  • Sakthivel, R. , Revathi, P. , Ren, Y. (2013). Existence of solutions for nonlinear fractional stochastic differential equations. Nonlinear Anal. Theor. Methods Appl . 81:70–86. DOI: 10.1016/j.na.2012.10.009.
  • Boufoussi, B. , Hajji, S. (2017). Stochastic delay differential equations in a Hilbert space driven by fractional Brownian motion. Stat. Probab. Lett . 129:222–229. DOI: 10.1016/j.spl.2017.06.006.
  • Kumar, M. , Kumar, S. , Das, M. K. , Budhiraja, R. , Singh, S. (2018). Securing images with a diffusion mechanism based on fractional Brownian motion. J. Inform. Secur. Appl . 40:134–144. DOI: 10.1016/j.jisa.2018.03.007.
  • Li, Z. , Xu, L. , Yan, L. (2019). Global attracting set and exponential decay of coupled neutral spdes driven by fractional Brownian motion. Stochastics 1:1–26.
  • Ma, Y.-K. , Arthi, G. , Anthoni, S. M. (2018). Exponential stability behavior of neutral stochastic integrodifferential equations with fractional Brownian motion and impulsive effects. Adv. Differ. Equ. 2018(1):1–20. DOI: 10.1186/s13662-018-1562-6.
  • Xu, L. , Li, Z. (2018). Stochastic fractional evolution equations with fractional Brownian motion and infinite delay. Appl. Math. Comput. 336:36–46. DOI: 10.1016/j.amc.2018.04.060.
  • Bahamonde, N. , Torres, S. , Tudor, C. A. (2018). Arch model and fractional Brownian motion. Stat. Probab. Lett . 134:70–78. DOI: 10.1016/j.spl.2017.10.003.
  • Agarwal, R. P. , Andrade, B. , Cuevas, C. (2010). On type of periodicity and ergodicity to a class of fractional order differential equations. Adv. Diff. Equ. 2010(1):179750. DOI: 10.1186/1687-1847-2010-179750.
  • Araya, D. , Lizama, C. (2008). Almost automorphic mild solutions to fractional differential equations. Nonlinear Anal. Theor. Methods Appl. 69(11):3692–3705. DOI: 10.1016/j.na.2007.10.004.
  • Cao, J. , Huang, Z. (2019). Asymptotic almost periodicity of stochastic evolution equations. Bull. Malays. Math. Sci. Soc . 42(5):2295–2332. DOI: 10.1007/s40840-018-0604-2.
  • Chang, Y.-K. , Ma, R. , Zhao, Z.-H. (2013). Almost periodic solutions to a stochastic differential equation in Hilbert spaces. Results Math. 63(1-2):435–449. DOI: 10.1007/s00025-011-0207-9.
  • Li, Z. , Liu, K. , Luo, J. (2014). On almost periodic mild solutions for neutral stochastic evolution equations with infinite delay. Nonlinear Anal. Theor. Methods Appl . 110:182–190. DOI: 10.1016/j.na.2014.08.005.
  • Ma, X. , Shu, X.-B. , Mao, J. (2020). Existence of almost periodic solutions for fractional impulsive neutral stochastic differential equations with infinite delay. Stoch. Dyn . 20(01):2050003. DOI: 10.1142/S0219493720500033.
  • Bohr, H. (2018). Almost Periodic Functions . Mineola, NY: Courier Dover Publications.
  • Bezandry, P. H. , Diagana, T. (2007). Existence of almost periodic solutions to some stochastic differential equations. Appl. Anal . 86(7):819–827. DOI: 10.1080/00036810701397788.
  • Sun, X. , Guo, F. (2018). On moment estimates and continuity for solutions of SDES driven by fractional Brownian motions under non-Lipchitz conditions. Stat. Probab. Lett . 132:116–124. DOI: 10.1016/j.spl.2017.09.008.
  • Pazy, A. (2012). Semigroups of Linear Operators and Applications to Partial Differential Equations, Vol. 44. Berlin/Heidelberg, Germany: Springer Science & Business Media.
  • Kilbas, A. (2006). Theory and Applications of Fractional Differential Equations, Vol. 204. Amsterdam: Elsevier.
  • Anwar, A. M. O. , Jarad, F. , Baleanu, D. , Ayaz, F. (2013). Fractional Caputo Heat Equation within the Double Laplace Transform. Rom. J. Phys. 58:15–22.
  • Shu, X.-B. , Shi, Y. (2016). A study on the mild solution of impulsive fractional evolution equations. Appl. Math. Comput. 273:465–476. DOI: 10.1016/j.amc.2015.10.020.
  • Liu, Z. , Lu, L. (2012). A class of BVPS for nonlinear fractional differential equations with p-laplacian operator. Electron. J. Qual. Theory Differ. Equ . (70):1–16. DOI: 10.14232/ejqtde.2012.1.70.
  • Liu, Z. , Sun, J. (2012). Nonlinear boundary value problems of fractional differential systems. Comput. Math. Appl. 64(4):463–475. DOI: 10.1016/j.camwa.2011.12.020.
  • Deng, S. , Shu, X.-B. , Mao, J. (2018). Existence and exponential stability for impulsive neutral stochastic functional differential equations driven by FBM with noncompact semigroup via Mönch fixed point. J. Math. Anal. Appl. 467(1):398–420. DOI: 10.1016/j.jmaa.2018.07.002.
  • Caraballo, T. , Garrido-Atienza, M. J. , Taniguchi, T. (2011). The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion. Nonlinear Anal. Theor. Methods Appl. 74(11):3671–3684. DOI: 10.1016/j.na.2011.02.047.
  • Batir, N. (2008). Inequalities for the gamma function. Arch. Math . 91(6):554–563. DOI: 10.1007/s00013-008-2856-9.
  • Yan, B. (2001). Boundary value problems on the half-line with impulses and infinite delay. J. Math. Anal. Appl. 259(1):94–114. DOI: 10.1006/jmaa.2000.7392.
  • Bellman, R. (1943). The stability of solutions of linear differential equations. Duke Math. J . 10(4):643–647. DOI: 10.1215/S0012-7094-43-01059-2.
  • Li, S. , Shu, L. , Shu, X.-B. , Xu, F. (2019). Existence and Hyers-Ulam stability of random impulsive stochastic functional differential equations with finite delays. Stochastics 91(6):857–872. DOI: 10.1080/17442508.2018.1551400.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.