176
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

A Novel Hollow-Fiber Membrane Embedded Co-axial Microdevice for Simultaneous Extraction and Stripping

, , &

References

  • Anthemidis, A. N.; Ioannou, K. G. Recent Developments in Homogeneous and Dispersive Liquid-liquid Extraction for Inorganic Elements Determination. A Review. TALANTA. 2009, 80(2), 413–421. DOI: 10.1016/j.talanta.2009.09.005.
  • Pires, M. J.; AiresBarros, M. R.; Cabral, J. Liquid-liquid Extraction of Proteins with Reversed Micelles. Biotechnol. Prog. 1996, 12(3), 290–301. DOI: 10.1021/bp950050l.
  • Zgola-Grzeskowiak, A.; Grzeskowiak, T. Dispersive Liquid-liquid Microextraction. Trac-Trends Anal. Chem. 2011, 30(9SI), 1382–1399. DOI: 10.1016/j.trac.2011.04.014.
  • Xie, F.; Zhang, T. A.; Dreisinger, D.; Doyle, F. A Critical Review on Solvent Extraction of Rare Earths from Aqueous Solutions. Miner. Eng. 2014, 56, 10–28. DOI: 10.1016/j.mineng.2013.10.021.
  • Stoffers, M.; Gorak, A. Continuous Multi-stage Extraction of N-butanol from Aqueous Solutions with 1-hexyl-3-methylimidazolium Tetracyanoborate. Sep. Purif. Technol. 2013, 120, 415–422. DOI: 10.1016/j.seppur.2013.10.016.
  • Turkay, S.; Civelekoglu, H. Deacidification of Sulfur Olive Oil .2. Multistage Liquid-Liquid-Extraction of Miscella with Ethyl-Alcohol. J. Amer. Oil Chem. Soc. 1991, 68(11), 818–821. DOI: 10.1007/BF02660594.
  • Rosa, P. A. J.; Azevedo, A. M.; Ferreira, I. F.; Sommerfeld, S.; Baecker, W.; Aires-Barros, M. R. Downstream Processing of Antibodies: Single-stage versus Multi-stage Aqueous Two-phase Extraction. J. Chromatogr. A. 2009, 1216(50), 8741–8749. DOI: 10.1016/j.chroma.2009.02.024.
  • Perkel, J. M.;. Life Science Technologies: Microfluidics—Bringing New Things to Life Science. Science. 2008, 322(5903), 975–977. DOI: 10.1126/science.322.5903.975.
  • Stone, H. A.; Kim, S. Microfluidics: Basic Issues, Applications, and Challenges. AIChE J. 2001, 47(6), 1250–1254. DOI: 10.1002/(ISSN)1547-5905.
  • Ghanadzadeh, H.; Ghanadzadeh, A.; Aghajani, Z.; Abbasnejad, S.; Shekarsaraee, S. (Liquid+ liquid) Equilibria in Ternary Aqueous Mixtures of Phosphoric Acid with Organic Solvents at T= 298.2 K. J. Chem. Thermodyn. 2010, 42(6), 695–699. DOI: 10.1016/j.jct.2010.01.001.
  • Baroud, C. N.; Willaime, H. Multiphase Flows in Microfluidics. Comptes. Rendus. Phys. 2004, 5(5), 547–555. DOI: 10.1016/j.crhy.2004.04.006.
  • Demello, A. J.;. Control and Detection of Chemical Reactions in Microfluidic Systems. Nature. 2006, 442(7101), 394–402. DOI: 10.1038/nature05062.
  • Rezaee, M.; Yamini, Y.; Faraji, M. Evolution of Dispersive Liquid-liquid Microextraction Method. J. Chromatogr. A. 2010, 1217(16), 2342–2357. DOI: 10.1016/j.chroma.2009.11.088.
  • Herrera-Herrera, A. V.; Asensio-Ramos, M.; Hernandez-Borges, J.; Angel Rodriguez-Delgado, M. Dispersive Liquid-liquid Microextraction for Determination of Organic Analytes. Trac-Trends Anal. Chem. 2010, 29(7si), 728–751. DOI: 10.1016/j.trac.2010.03.016.
  • Wang, K.; Wang, Y. J.; Chen, G. G.; Luo, G. S.; Wang, J. D. Enhancement of Mixing and Mass Transfer Performance with a Microstructure Minireactor for Controllable Preparation of CaCO3 Nanoparticles. Ind. Eng. Chem. Res. 2007, 46(19), 6092–6098.
  • Xu, J. H.; Tan, J.; Li, S. W.; Luo, G. S. Enhancement of Mass Transfer Performance of Liquid-liquid System by Droplet Flow in Microchannels. Chem. Eng. J. 2008, 141(1–3), 242–249. DOI: 10.1016/j.cej.2007.12.030.
  • Xu, J. H.; Luo, G. S.; Chen, G. G.; Tan, B. Mass Transfer Performance and Two-phase Flow Characteristic in Membrane Dispersion Mini-extractor. J. Membr. Sci. 2005, 249(1–2), 75–81. DOI: 10.1016/j.memsci.2004.09.039.
  • ZHANG, Z.; MA, Y.; YE, S.; LI, J.; ZHONG, B. Research on Purifying Wet-process Phosphoric Acid by Membrane Dispersion Extraction. Chem. Ind. Eng. Prog. 2011, 7, 045.
  • Tokeshi, M.; Minagawa, T.; Kitamori, T. Integration of a Microextraction System on a Glass Chip: Ion-pair Solvent Extraction of Fe (II) with 4, 7-diphenyl-1, 10-phenanthrolinedisulfonic Acid and Tri-n-octylmethylammonium Chloride. Anal. Chem. 2000, 72(7), 1711–1714. DOI: 10.1021/ac991147f.
  • Burns, J. R.; Ramshaw, C. The Intensification of Rapid Reactions in Multiphase Systems Using Slug Flow in Capillaries. Lab Chip. 2001, 1(1), 10–15. DOI: 10.1039/b102818a.
  • Tetala, K. K.; Swarts, J. W.; Chen, B.; Janssen, A. E.; van Beek, T. A. A Three-phase Microfluidic Chip for Rapid Sample Clean-up of Alkaloids from Plant Extracts. Lab Chip. 2009, 9(14), 2085–2092. DOI: 10.1039/b822106e.
  • Lan, W.; Jing, S.; Li, S.; Luo, G. Hydrodynamics and Mass Transfer in a Countercurrent Multistage Microextraction System. Ind. Eng. Chem. Res. 2016, 55(20), 6006–6017. DOI: 10.1021/acs.iecr.6b00162.
  • Li, S.; Jing, S.; Luo, Q.; Chen, J.; Luo, G. Bionic System for Countercurrent Multi-stage Micro-extraction. RSC Adv. 2012, 2(29), 10817–10820. DOI: 10.1039/c2ra21818f.
  • Günther, A.; Jensen, K. F. Multiphase Microfluidics: From Flow Characteristics to Chemical and Materials Synthesis. Lab Chip. 2006, 6(12), 1487–1503. DOI: 10.1039/B609851G.
  • Hibara, A.; Nonaka, M.; Hisamoto, H.; Uchiyama, K.; Kikutani, Y.; Tokeshi, M.; Kitamori, T. Stabilization of Liquid Interface and Control of Two-phase Confluence and Separation in Glass Microchips by Utilizing Octadecylsilane Modification of Microchannels. Anal. Chem. 2002, 74(7), 1724–1728. DOI: 10.1021/ac011038c.
  • Aota, A.; Nonaka, M.; Hibara, A.; Kitamori, T. Countercurrent Laminar Microflow for Highly Efficient Solvent Extraction. Angew. Chem. 2007, 119(6), 896–898. DOI: 10.1002/(ISSN)1521-3757.
  • Kralj, J. G.; Sahoo, H. R.; Jensen, K. F. Integrated Continuous Microfluidic Liquid–Liquid Extraction. Lab Chip. 2007, 7(2), 256–263. DOI: 10.1039/B610888A.
  • Luo, Q.; Li, S.; Jing, S. The Study of Fluid Dynamics in Countercurrent Multi-stage Micro-extraction System. Energy Proc. 2013, 39, 275–282. DOI: 10.1016/j.egypro.2013.07.214.
  • Weeranoppanant, N.; Adamo, A.; Saparbaiuly, G.; Rose, E.; Fleury, C.; Schenkel, B.; Jensen, K. F. Design of Multistage Counter-Current Liquid–Liquid Extraction for Small-Scale Applications. Ind. Eng. Chem. Res. 2017, 56(14), 4095–4103. DOI: 10.1021/acs.iecr.7b00434.
  • Li, N. N.;. Separation of Hydrocarbons by Liquid Membrane Permeation. Ind. Eng. Chem. Process Des. Dev. 1971, 10(2), 215–221. DOI: 10.1021/i260038a014.
  • Li, N. N.;, Separating Hydrocarbons with Liquid Membranes. Google Patents: 1968.
  • Frankenfeld, J. W.; Cahn, R. P.; Li, N. N. Extraction of Copper by Liquid Membranes. Sep. Sci. Technol. 1981, 16(4), 385–402. DOI: 10.1080/01496398108068528.
  • Chakravarti, A. K.; Chowdhury, S. B.; Mukherjee, D. C. Liquid Membrane Multiple Emulsion Process of Separation of Copper (II) from Waste Waters. Colloids Surf. A. 2000, 166(1–3), 7–25. DOI: 10.1016/S0927-7757(99)00452-5.
  • Kamlet, M. J.; Doherty, R. M.; Abraham, M. H.; Marcus, Y.; Taft, R. W. Linear Solvation Energy Relationships .46. An Improved Equation for Correlation and Prediction of Octanol Water Partition-Coefficients of Organic Nonelectrolytes (Including Strong Hydrogen-Bond Donor solutes). J. Phys. Chem. 1988, 92(18), 5244–5255. DOI: 10.1021/j100329a035.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.