201
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Nanoparticle α-ZrP Enhanced Superhydrophobicity

, , &

References

  • Cassie, A. B. D.; Baxter, S. Wettability of Porous Surfaces. Trans. Faraday Soc. 1944, 40, 546–551. DOI: 10.1039/TF9444000546.
  • Liu, K.; Yao, X.; Jiang, L. Recent Developments in Bio-Inspired Special Wettability. Chem. Soc. Rev. 2010, 39(8), 3240–3255. DOI: 10.1039/B917112F.
  • Lafuma, A.; Quéré, D. Superhydrophobic States. Nat. Mater. 2003, 2(7), 457–460. DOI: 10.1038/nmat924.
  • Sun, T.; Feng, L.; Gao, X.; Jiang, L. Bioinspired Surfaces with Special Wettability. Acc. Chem. Res. 2005, 38(8), 644–652. DOI: 10.1021/ar040224c.
  • Choi, H.; Liang, H. Wettability and Spontaneous Penetration of a Water Drop into Hydrophobic Pores. J. Colloid Interface Sci. 2016, 477, 176–180.
  • Choi, H.; Lee, K.; Reeks, J.; Liang, H. Design and Synthesis of a Superhydrophobic PVDF-Based Composite. J. Tribol. 2016, 138 (2).
  • Kim, S.; Choi, H.; Polycarpou, A. A.; Liang, H. Morphology-Influenced Wetting Model of Nanopore Structures. Friction. 2016, 4(3), 249–256.
  • Choi, H.; Ma, L.; Liang, H. A Kinetic Study of the Spontaneous Penetration of A Water Drop into A Hydrophobic Pore. Surf. Topogr. Metrol. Prop. 2017, 5(1), 014003.
  • Fürstner, R.; Barthlott, W.; Neinhuis, C.; Walzel, P. Wetting and Self-Cleaning Properties of Artificial Superhydrophobic Surfaces. Langmuir. 2005, 21(3), 956–961. DOI: 10.1021/la0401011.
  • Neinhuis, C.; Barthlott, W. Characterization and Distribution of Water-Repellent, Self-Cleaning Plant Surfaces. Ann. Bot. 1997, 79(6), 667–677. DOI: 10.1006/anbo.1997.0400.
  • Bico, J.; Marzolin, C.; Quéré, D. Pearl Drops. EPL Europhys. Lett. 1999, 47 (2), 220. DOI: 10.1209/epl/i1999-00548-y.
  • Hou, X.; Zhou, F.; Yu, B.; Liu, W. Superhydrophobic Zinc Oxide Surface by Differential Etching and Hydrophobic Modification. Mater. Sci. Eng. A. 2007, 452–453, 732–736. DOI: 10.1016/j.msea.2006.11.057.
  • Chen, W.; Fadeev, A. Y.; Hsieh, M. C.; Öner, D.; Youngblood, J.; McCarthy, T. J. Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples. Langmuir. 1999, 15(10), 3395–3399. DOI: 10.1021/la990074s.
  • Wang, D.; Guo, Z.; Chen, Y.; Hao, J.; Liu, W. In Situ Hydrothermal Synthesis of Nanolamellate CaTiO3 with Controllable Structures and Wettability. Inorg. Chem. 2007, 46(19), 7707–7709. DOI: 10.1021/ic700777f.
  • Xiu, Y.; Zhu, L.; Hess, D. W.; Wong, C. P. Hierarchical Silicon Etched Structures for Controlled Hydrophobicity/Superhydrophobicity. Nano Lett. 2007, 7(11), 3388–3393. DOI: 10.1021/nl0717457.
  • Lau, K. K. S.; Bico, J.; Teo, K. B. K.; Chhowalla, M.; Amaratunga, G. A. J.; Milne, W. I.; McKinley, G. H.; Gleason, K. K. Superhydrophobic Carbon Nanotube Forests. Nano Lett. 2003, 3(12), 1701–1705. DOI: 10.1021/nl034704t.
  • Lee, K.; Lyu, S.; Lee, S.; Kim, Y. S.; Hwang, W. Characteristics and Self-Cleaning Effect of the Transparent Super-Hydrophobic Film Having Nanofibers Array Structures. Appl. Surf. Sci. 2010, 256(22), 6729–6735. DOI: 10.1016/j.apsusc.2010.04.081.
  • Feng, L.; Li, S.; Li, Y.; Li, H.; Zhang, L.; Zhai, J.; Song, Y.; Liu, B.; Jiang, L.; Zhu, D. Super-Hydrophobic Surfaces: From Natural to Artificial. Adv. Mater. 2002, 14(24), 1857–1860. DOI: 10.1002/adma.200290020.
  • Erbil, H. Y.; Demirel, A. L.; Avcı, Y.; Mert, O. Transformation of a Simple Plastic into a Superhydrophobic Surface. Science. 2003, 299(5611), 1377–1380. DOI: 10.1126/science.1078365.
  • Cortese, B.; D’Amone, S.; Manca, M.; Viola, I.; Cingolani, R.; Gigli, G. Superhydrophobicity Due to the Hierarchical Scale Roughness of PDMS Surfaces. Langmuir. 2008, 24(6), 2712–2718. DOI: 10.1021/la702764x.
  • Michael, N.; Bhushan, B. Hierarchical Roughness Makes Superhydrophobic States Stable. Microelectron. Eng. 2007, 84(3), 382–386. DOI: 10.1016/j.mee.2006.10.054.
  • Koch, K.; Bhushan, B.; Chae Jung, Y.; Barthlott, W. Fabrication of Artificial Lotus Leaves and Significance of Hierarchical Structure for Superhydrophobicity and Low Adhesion. Soft Matter. 2009, 5(7), 1386–1393. DOI: 10.1039/B818940D.
  • Bravo, J.; Zhai, L.; Wu, Z.; Cohen, R. E.; Rubner, M. F. Transparent Superhydrophobic Films Based on Silica Nanoparticles. Langmuir. 2007, 23(13), 7293–7298. DOI: 10.1021/la070159q.
  • Ling, X. Y.; Phang, I. Y.; Vancso, G. J.; Huskens, J.; Reinhoudt, D. N. Stable and Transparent Superhydrophobic Nanoparticle Films. Langmuir. 2009, 25(5), 3260–3263. DOI: 10.1021/la8040715.
  • Zhou, H.; Wang, H.; Niu, H.; Gestos, A.; Wang, X.; Lin, T. Fluoroalkyl Silane Modified Silicone Rubber/Nanoparticle Composite: A Super Durable, Robust Superhydrophobic Fabric Coating. Adv. Mater. 2012, 24(18), 2409–2412. DOI: 10.1002/adma.201200184.
  • Li, H.; Xin, B.; Feng, L.; Hao, J. Stable ZnO/Ionic Liquid Hybrid Materials: Novel Dual-Responsive Superhydrophobic Layers to Light and Anions. Sci. China Chem. 2014, 57(7), 1002–1009. DOI: 10.1007/s11426-014-5090-2.
  • Cao, L.; Jones, A. K.; Sikka, V. K.; Wu, J.; Gao, D. Anti-Icing Superhydrophobic Coatings. Langmuir. 2009, 25(21), 12444–12448. DOI: 10.1021/la902882b.
  • Jamil, M. I.; Zhan, X.; Chen, F.; Cheng, D.; Zhang, Q. Durable and Scalable Candle Soot Icephobic Coating with Nucleation and Fracture Mechanism. ACS Appl. Mater. Interfaces. 2019, 11(34), 31532–31542. DOI: 10.1021/acsami.9b09819.
  • Huang, J. Y.; Li, S. H.; Ge, M. Z.; Wang, L. N.; Xing, T. L.; Chen, G. Q.; Liu, X. F.; Al-Deyab, S. S.; Zhang, K. Q.; Chen, T.; et al. Robust Superhydrophobic TiO 2 @fabrics for UV Shielding, Self-Cleaning and Oil–Water Separation. J. Mater. Chem. A. 2015, 3(6), 2825–2832. DOI: 10.1039/C4TA05332J.
  • Falde, E. J.; Yohe, S. T.; Colson, Y. L.; Grinstaff, M. W. Superhydrophobic Materials for Biomedical Applications. Biomaterials. 2016, 104, 87–103. DOI: 10.1016/j.biomaterials.2016.06.050.
  • Shuai, M.; Mejia, A. F.; Chang, Y.-W.; Cheng, Z. Hydrothermal Synthesis of Layered α-Zirconium Phosphate Disks: Control of Aspect Ratio and Polydispersity for Nano-Architecture. CrystEngComm. 2013, 15(10), 1970–1977. DOI: 10.1039/C2CE26402A.
  • Troup, J. M.; Clearfield, A. Mechanism of Ion Exchange in Zirconium Phosphates. 20. Refinement of the Crystal Structure of.alpha.-zirconium Phosphate. Inorg. Chem. 1977, 16(12), 3311–3314. DOI: 10.1021/ic50178a065.
  • Zhou, Y.; Huang, R.; Ding, F.; Brittain, A. D.; Liu, J.; Zhang, M.; Xiao, M.; Meng, Y.; Sun, L. Sulfonic Acid-Functionalized α-Zirconium Phosphate Single-Layer Nanosheets as a Strong Solid Acid for Heterogeneous Catalysis Applications. ACS Appl. Mater. Interfaces. 2014, 6(10), 7417–7425. DOI: 10.1021/am5008408.
  • Amphlett, C. B.; McDonald, L. A.; Redman, M. J. Cation Exchange Properties of Zirconium Phosphate; Soc Chemical Industry 14 Belgrave Square, London SW1X 8PS: England, 1956.
  • Pan, B. C.; Zhang, Q. R.; Zhang, W. M.; Pan, B. J.; Du, W.; Lv, L.; Zhang, Q. J.; Xu, Z. W.; Zhang, Q. X. Highly Effective Removal of Heavy Metals by Polymer-Based Zirconium Phosphate: A Case Study of Lead Ion. J. Colloid Interface Sci. 2007, 310(1), 99–105.
  • Mosby, B. M.; Díaz, A.; Clearfield, A. Surface Modification of Layered Zirconium Phosphates: A Novel Pathway to Multifunctional Materials. Dalton Trans. 2014, 43(27), 10328–10339.
  • Pica, M.; Donnadio, A.; Bianchi, V.; Fop, S.; Casciola, M. Aminoalcohol Functionalized Zirconium Phosphate as Versatile Filler for Starch-Based Composite Membranes. Carbohydr. Polym. 2013, 97(1), 210–216.
  • Wang, X.; Zhao, D.; Diaz, A.; Medina, I. B. N.; Wang, H.; Cheng, Z. Thermo-Sensitive Discotic Colloidal Liquid Crystals. Soft Matter. 2014, 10(39), 7692–7695.
  • Bellezza, F.; Cipiciani, A.; Costantino, U.; Negozio, M. E. Zirconium Phosphate and Modified Zirconium Phosphates as Supports of Lipase. Preparation of the Composites and Activity of the Supported Enzyme. Langmuir. 2002, 18(23), 8737–8742.
  • Dai, W.; Kheireddin, B.; Gao, H.; Kan, Y.; Clearfield, A.; Liang, H. Formation of Anti-Wear Tribofilms via α-ZrP Nanoplatelet as Lubricant Additives. Lubricants. 2016, 4(3), 28.
  • Chen, Y.; Wang, X.; Clearfield, A.; Liang, H. Anti-Galling Effects of α-Zirconium Phosphate Nanoparticles as Grease Additives. J. Tribol. 2018, 141 (3), 031801–031801–031806. DOI: 10.1115/1.4041538.
  • Wang, X.; Zhang, L.; Yu, Y.-H.; Jia, L.; Sam Mannan, M.; Chen, Y.; Cheng, Z. Nano-Encapsulated PCM via Pickering Emulsification. Sci. Rep. 2015, 5(1), 1–8. DOI: 10.1038/srep13357.
  • Krimm, S.; Liang, C. Y.; Sutherland, G. B. B. M. Infrared Spectra of High Polymers. II. Polyethylene. J. Chem. Phys. 1956, 25(3), 549–562. DOI: 10.1063/1.1742963.
  • Teisala, H.; Butt, H.-J. Hierarchical Structures for Superhydrophobic and Superoleophobic Surfaces. Langmuir. 2019, 35(33), 10689–10703. DOI: 10.1021/acs.langmuir.8b03088.
  • Havlin, S.; Ben-Avraham, D. Diffusion in Disordered Media. Adv. Phys. 2002, 51(1), 187–292. DOI: 10.1080/00018730110116353.
  • Weitz, D. A.; Oliveria, M. Fractal Structures Formed by Kinetic Aggregation of Aqueous Gold Colloids. Phys. Rev. Lett. 1984, 52(16), 1433–1436. DOI: 10.1103/PhysRevLett.52.1433.
  • Lin, M. Y.; Lindsay, H. M.; Weitz, D. A.; Ball, R. C.; Klein, R.; Meakin, P. Universality in Colloid Aggregation. Nature. 1989, 339(6223), 360–362. DOI: 10.1038/339360a0.
  • Sun, L.; Boo, W. J.; Sue, H.-J. Clearfield, A. Preparation of α-Zirconium Phosphate Nanoplatelets with Wide Variations in Aspect Ratios. New J. Chem. 2007, 31(1), 39–43. DOI: 10.1039/B604054C.
  • Yang, H.; Deng, Y. Preparation and Physical Properties of Superhydrophobic Papers. J. Colloid Interface Sci. 2008, 325(2), 588–593. DOI: 10.1016/j.jcis.2008.06.034.
  • Liu, F.; Ma, M.; Zang, D.; Gao, Z.; Wang, C. Fabrication of Superhydrophobic/Superoleophilic Cotton for Application in the Field of Water/Oil Separation. Carbohydr. Polym. 2014, 103, 480–487. DOI: 10.1016/j.carbpol.2013.12.022.
  • Ge, J.; Zhao, H.-Y.; Zhu, H.-W.; Huang, J.; Shi, L.-A.; Yu, S.-H. Advanced Sorbents for Oil-Spill Cleanup: Recent Advances and Future Perspectives. Adv. Mater. 2016, 28(47), 10459–10490. DOI: 10.1002/adma.201601812.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.