64
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Vacancy Tuning in Li,V-Substituted Lyonsites

ORCID Icon, , &

References

  • Vasala, S.; Karppinen, M. A2B’B”O6 Perovskites: A Review. Prog. Solid State Chem. 2015, 43, 1–36. DOI: 10.1016/j.progsolidstchem.2014.08.001.
  • Ramirez, A. P. Colossal Magnetoresistance. J. Phys. Condens. Matter. 1997, 9, 8171–8199. DOI: 10.1088/0953-8984/9/39/005.
  • Subramanian, M. A.; Aravamudan, G.; Subba Rao, G. V. Oxide Pyrochlores A Review. Prog. Solid State Chem. 1983, 15, 55–143. DOI: 10.1016/0079-6786(83)90001-8.
  • Jona, F.; Shirane, G.; Pepinsky, R. Dielectric, X-ray, and Optical Study of Ferroelectric Cd2Nb2O7 and Related Compounds. Phys. Rev. 1955, 98, 903–909. DOI: 10.1103/PhysRev.98.903.
  • Jin, R.; He, J.; McCall, S.; Alexander, C. S.; Drymiotis, F.; Mandrus, D. Superconductivity in the Correlated Pyrochlore Cd2Re2O7. Phys. Rev. B. 2001, 64, 180503(R). DOI: 10.1103/PhysRevB.64.180503.
  • Sleight, A. W. New Ternary Oxides of Mercury with the Pyrochlore Structure. Inorg. Chem. 1968, 7, 1704–1708. DOI: 10.1021/ic50067a003.
  • Subramanian, M.; Subramanian, R.; Clearfield, A. Fast Ion Conduction in the Defect Pyrochlore System KBxW2xO6 (B = Al, Ti and Ta). Solid State Ionics. 1985, 15(1), 15–19. DOI: 10.1016/0167-2738(85)90101-8.
  • Subramanian, M.; Clearfield, A. Ionic Conductivity of Ag+ Exchanged α-zirconium Phosphate. Mater. Res. Bull. 1984, 19(9), 1135–1140. DOI: 10.1016/0025-5408(84)90063-1.
  • Clearfield, A. Inorganic Ion Exchange Materials; CRC Press: Boca Raton, 1982.
  • Subramanian, M.; Subramanian, R.; Clearfield, A. Lithium Ion Conductors in the System AB(IV)2(PO4)3 (B = Ti, Zr and Hf). Solid State Ionics. 1986, 18–19, 562–569. DOI: 10.1016/0167-2738(86)90179-7.
  • Subramanian, M.; Rudolf, P.; Clearfield, A. The Preparation, Structure, and Conductivity of Scandium-substituted NASICONs. J. Solid State Chem. 1985, 60(2), 172–181. DOI: 10.1016/0022-4596(85)90109-4.
  • Clearfield, A.; Subramanian, M.; Wang, W.; Jerus, P. The Use of Hydrothermal Procedures to Synthesize NASICON and Some Comments on the Stoichiometry of NASICON Phases. Solid State Ionics. 1983, 9–10, 895–902. DOI: 10.1016/0167-2738(83)90108-X.
  • Rudolf, P.; Subramanian, M.; Clearfield, A.; Jorgensen, J. The Crystal Structure of a Nonstoichiometric NASICON. Mater. Res. Bull. 1985, 20(6), 643–651. DOI: 10.1016/0025-5408(85)90142-4.
  • Clearfield, A.; Subramanian, M.; Rudolf, P.; Moini, A. Stoichiometry, Structure and Conductivity of Nasicon. Solid State Ionics. 1986, 18–19, 13–20. DOI: 10.1016/0167-2738(86)90085-8.
  • Smit, J. P.; Stair, P. C.; Poeppelmeier, K. R. The Adaptable Lyonsite Structure. Chem. Eur. J. 2006, 12, 5944–5953. DOI: 10.1002/chem.200600294.
  • Smith, G. W. Crystal Structure of Orthorhombic Cobalt Molybdate. Nature. 1960, 188, 306–308. DOI: 10.1038/188306b0.
  • Ibers, J. A.; Smith, G. W. Crystal Structure of a Sodium Cobalt Molybdate. Act. Crystallogr. 1964, 17, 190–197. DOI: 10.1107/S0365110X64000482.
  • Klevtsova, R. F.; Magarill, S. A. Crystal Structure of Lithium-ferriferrous Molybdates Li3Fe(MoO4)3 and Li2Fe2(MoO4)3. Kristallografiya. 1970, 15, 710–715.
  • Hughes, J. M.; Starkey, S. J.; Malinconico, M. L.; Malinconico, L. L. Lyonsite, Cu2+3Fe3+4(VO4)3-6, a New Fumarolic Sublimate from Izalco Volcano, El Salvador; Descriptive Mineralogy and Crystal Structure. Am. Mineral. 1987, 72, 1000–1005.
  • Stanek, C. R.; Jiang, C.; Uberuaga, B. P.; Sickafus, K. E.; Cleave, A. R.; Grimes, R. W. Predicted Structure and Stability of A4B3O12 δ-phase Compositions. Phys. Rev. B. 2009, 80, 174101. DOI: 10.1103/PhysRevB.80.174101.
  • Fang, L.; Zhang, H.; Yu, Q.; Su, H.; Wu, B.; Cui, X. Sr3LaNb3O12: A New Low Loss and Temperature Stable A4B3O12-type Microwave Dielectric Ceramic. J. Am. Ceram. Soc. 2009, 92, 556–558.
  • Fang, L.; Meng, -S.-S.; Zhang, H.; Liu, Z.-Q. Ba2La2TiNb2O12: A New Microwave Dielectric of A4B3O12-type Cation-deficient Perovskites. Mater. Lett. 2006, 60(9), 1147–1150. DOI: 10.1016/j.matlet.2005.10.097.
  • Evans, R. J.; Groat, L. A. Structure and Topology of Dumortierite and Dumortierite-like Materials. Can. Mineral. 2012, 50(5), 1197–1231. DOI: 10.3749/canmin.50.5.1197.
  • Pieczka, A.; Evans, R.; Grew, E.; Groat, L.; Ma, C.; Rossman, G. The Dumortierite Supergroup. I. A New Nomenclature for the Dumortierite and Holtite Groups. Mineral. Mag. 2013, 77, 2825–2839. DOI: 10.1180/minmag.2013.077.6.09.
  • Wang, X.; Pless, J. D.; Vander Griend, D. A.; Stair, P. C.; Poeppelmeier, K. R.; Hu, Z.; Jorgensen, J. D. Vanadium and Molybdenum Disorder in M2.5VMoO8 (M = Mg, Mn, and Zn) Determined with Neutron Powder Diffraction and Phase Formation Studies of Mg2.5+xV1+2xMo1−2xO8. J. Alloys Compd. 2004, 379, 87–94. DOI: 10.1016/j.jallcom.2004.02.015.
  • Smit, J. P.; Kim, H.; Saratovsky, I.; Stark, K. B.; Fitzgerald, G.; Zajac, G. W.; Gaillard, J.; Poeppelmeier, K. R.; Stair, P. C. A Spectroscopic and Computational Investigation of the Vanadomolybdate Local Structure in the Lyonsite Phase Mg2.5VMoO8. Inorg. Chem. 2007, 46, 6556–6564. DOI: 10.1021/ic7006815.
  • Katz, L.; Kasenally, A.; Kihlborg, L. The Crystal Structure of the Reduced Copper Molybdate Cu4−xMo3O12 (X Approx.= 0.15). Acta Crystallogr. Sect. B Struct. Sci. 1971, 27, 2071–2077. DOI: 10.1107/S0567740871005387.
  • Sedello, O.; Mu¨ller-Buschbaum, H. Synthese und kristallstruktur von (Cu,Fe)3.63Mo3O12: Ein oxometallat mit eindimensional fl¨achenverknu¨pften oktaederketten/Synthesis and crystal structure of (Cu,Fe)3.63Mo3O12: An oxometallate showing one-dimensional chains of face sharing octahedra. Z. Naturforsch. B. J. Chem. Sci. 1996, 51, 90–94. DOI: 10.1515/znb-1996-0117.
  • Sedello, O.; Mu¨ller-Buschbaum, H. Zur Kristallstruktur Von (Cu,mn)3.66mo3o12/on the Crystal Structure of (Cu,mn)3.66mo3o12. Z. Naturforsch. B. J. Chem. Sci. 1996, 51, 447–449. DOI: 10.1515/znb-1996-0325.
  • Szillat, H.; Mu¨ller-Buschbaum, H. Zur Kenntnis Des Oxocuprats (Cu,co)3.75mo3o12 /On the Oxocuprate (Cu,co)3.75mo3o12. Z. Naturforsch. B. J. Chem. Sci. 1995, 50, 707–711. DOI: 10.1515/znb-1995-0503.
  • Sebastian, L.; Piffard, Y.; Shukla, A. K.; Taulelle, F.; Gopalakrishnan, J. Synthesis, Structure and Lithium-ion Conductivity of Li2−2xMg2+x(MoO4)3 and Li3M(MoO4)3 (MIII = Cr, Fe). J. Mater. Chem. 2003, 13, 1797. DOI: 10.1039/b301189e.
  • Bugaris, D. E.; Zur Loye, H.-C. Li3Al(MoO4)3, a Lyonsite Molybdate. Acta Crystallogr. Sect. C 2012. 68. DOI: 10.1107/S0108270112020513.
  • Kolitsch, U.; Tillmanns, E. Li3Sc(MoO4)3: Substitutional Disorder on Three (Li,sc) Sites. Acta Crystallogr. Sect. E Struct. Rep. Online 2003, 59, i55–i58. DOI: 10.1107/S1600536803004872.
  • Wiesmann, M.; Geselle, M.; Weitzel, H.; Fueß, H. Crystal Structure of Lithium Copper Molybdate, Li2Cu2(MoO4)3. Z. Kristallogr. 1994, 209, 615. DOI: 10.1524/zkri.1994.209.7.615.
  • Wiesmann, M.; Svoboda, I.; Weitzel, H.; Fuess, H. Crystal Structure of Lithium Cobalt Molybdate, Li2Co2(MoO4)3. Z. Kristallogr. 1995, 210, 1995. DOI: 10.1524/zkri.1995.210.7.525.
  • Xue, L.; Wang, Y.; Lv, P.; Chen, D.; Lin, Z.; Liang, J.; Huang, F.; Xie, Z. Growth, Structures, and Properties of Li2Zn2(MoO4)3 and Co-doped Li2Zn2(MoO4)3. Cryst. Growth Des. 2009, 9, 914–920. DOI: 10.1021/cg800700h.
  • Ozima, M.; Sato, S.; Zoltai, T. The Crystal Structure of a Lithiumnickel Molybdate, Li2Ni2Mo3O12, and the Systematics of the Structure Type. Acta Crystallogr. Sect. B Struct. Sci. 1977, 33, 2175–2181. DOI: 10.1107/S0567740877007973.
  • Wanklyn, B. M.; Wondre, F. R.; Davison, W. Flux Growth of Crystals of Some Magnetic Oxide Materials: Mn7SiO12, CuO, MCr2O4, MTiO3, Ni2NbBO6, MMoO4 and Li2M2(MoO4)3, (M = Mn, Co, Ni). J. Mater. Sci. 1976, 11, 1607–1614. DOI: 10.1007/BF00737516.
  • Smit, J. P.; McDonald, T. M.; Poeppelmeier, K. R. Li3Ti0.75(MoO4)3: A Lyonsite-type Oxide. Solid State Sci. 2008, 10, 396–400. DOI: 10.1016/j.solidstatesciences.2007.11.028.
  • Lafontaine, M.; Gren´eche, J.; Laligant, Y.; F´erey, G. β-Cu3Fe4(VO4)6: Structural Study and Relationships; Physical Properties. J. Solid State Chem. 1994. 1–10. DOI: 10.1006/jssc.1994.1001.
  • Wang, X.; Heier, K. R.; Stern, C. L.; Poeppelmeier, K. R. Crystal Growth and Structure of Mn2.47V0.94Mo1.06O8. J. Alloys Compd. 1998, 267, 79–85. DOI: 10.1016/S0925-8388(97)00574-4.
  • Kurzawa, M.; Bosacka, M.; Jakubus, P. The Structure and Selected Properties of Co2.5VMoO8. J. Mater. Sci. 2003, 38, 3137–3142. DOI: 10.1023/A:1024785415727.
  • Wang, X.; Heier, K. R.; Stern, C. L.; Poeppelmeier, K. R. Crystal Structure of Zn3.77V1.54Mo1.46O12 Containing ZnO6 Trigonal Prisms. J. Alloys Compd. 1997, 255, 190–194. DOI: 10.1016/S0925-8388(96)02812-5.
  • Tang, J. N.; Li, J.; Subramanian, M. A. Structural Investigation and Selected Properties of Zn2.5−xCoxVMoO8 Lyonsites. J. Solid State Chem. 2018, 266, 155–160. DOI: 10.1016/j.jssc.2018.07.007.
  • Tang, J. N.; Subramanian, M. A. Novel Compositions and Physical Property Comparisons for (A,A’)2.5vmoo8 Lyonsites (A = Zn, A’ = Mn, Ni, Cu). J. Solid State Chem. 2019, 271, 154–161. DOI: 10.1016/j.jssc.2018.12.045.
  • Jahn, H. A.; Teller, E. Stability of Polyatomic Molecules in Degenerate Electronic States: I–orbital Degeneracy. Proc. R. Soc. London A. 1937, 161, 220–235. DOI: 10.1098/rspa.1937.0142.
  • Belik, A. A.; Malakho, A. P.; Pokholok, K. V.; Lazoryak, B. I. Phase Formation in Cu3+1.5xR4−x(VO4)6 (R = Fe and Cr) Systems: Crystal Structure of Cu2.5Fe4.333(VO4)6, Cu4Fe3.333(VO4)6, and Cu4.05Cr3.3(VO4)6. J. Solid State Chem. 2001, 156, 339–348. DOI: 10.1006/jssc.2000.9004.
  • Mu, Z.; Song, E.; Zhu, D.; Feng, J.; Yang, Y. Red Phosphor Li2Mg2(WO4)3: Eu3+with Lyonsite Structure for near Ultraviolet Light-emitting Diodes. Displays. 2016, 43, 18–22. DOI: 10.1016/j.displa.2016.04.001.
  • Pless, J. D.; Kim, H.-S.; Smit, J. P.; Wang, X.; Stair, P. C.; Poeppelmeier, K. R. Structure of Mg2.56V1.12W0.88O8 and Vibrational Raman Spectra of Mg2.5VWO8 and Mg2.5VMoO8. Inorg. Chem. 2006, 45, 514–520. DOI: 10.1021/ic051740h.
  • Liao, Q.; Wang, Y.; Jiang, F.; Guo, D. Ultra-low Fire Glass-free Li3FeMo3O12 Microwave Dielectric Ceramics. J. Am. Ceram. Soc. 2014, 97, 2394–2396. DOI: 10.1111/jace.13073.
  • Zhou, D.; Randall, C. A.; Pang, L.; Wang, H.; Wu, X.; Guo, J.; Zhang, G.; Shui, L.; Yao, X. Microwave Dielectric Properties of Li2(M2+)2Mo3O12 and Li3(M3+)Mo3O12 (M = Zn, Ca, Al, and In) Lyonsite-related-type Ceramics with Ultra-low Sintering Temperatures. J. Am. Ceram. Soc. 2011, 94, 802–805. DOI: 10.1111/j.1551-2916.2010.04148.x.
  • Zhang, J.; Zuo, R. Synthesis and Microwave Dielectric Properties of Li2Mg2(WO4)3 Ceramics. Mater. Lett. 2015, 158, 92–94. DOI: 10.1016/j.matchemphys.2009.08.037.
  • Wang, D.; Zou, Z.; Ye, J. A Novel Series of Photocatalysts M2.5VMoO8 (M = Mg, Zn) for O2 Evolution under Visible Light Irradiation. Catal. Today. 2004, 93–95, 891–894. DOI: 10.1016/j.cattod.2004.06.090.
  • Gourai, K.; El Bouari, A.; Belhorma, B.; Bih, L. Adsorption of Methylene Blue on the Li3Fe1−xCrx(MoO4)3 (X =0,0.5,1) Lyonsite Phases. Am. J. Chem. 2016, 6, 47–54. DOI: 10.5923/j.chemistry.20160602.04.
  • Prabaharan, S.; Ramesh, S.; Michael, M.; Begam, K. Characterization of Soft- Combustion-derived NASICON-type Li2Co2(MoO4)3 for Lithium Batteries. Mater. Chem. Phys. 2004, 87(2–3), 318–326. DOI: 10.1016/j.matchemphys.2004.05.041.
  • Prabaharan, S.; Fauzi, A.; Michael, M.; Begam, K. New NASICON-type Li2Ni2(MoO4)3 as a Positive Electrode Material for Rechargeable Lithium Batteries. Solid State Ionics. 2004, 171(3–4), 157–165. DOI: 10.1016/j.ssi.2004.05.001.
  • Alvarez-Vega, M.; Amador, U.; Arroyo-de Dompablo, M. E. Electrochemical Study of Li3Fe(MoO4)3 as Positive Electrode in Lithium Cells. J. Electrochem. Soc. 2005, 152, A1306–A1311. DOI: 10.1149/1.1925069.
  • Smit, J. P.; Kim, H.-S.; Pless, J. D.; Stair, P. C.; Poeppelmeier, K. R. Probing the Vanadyl and Molybdenyl Bonds in Complex Vanadomolybdate Structures. Inorg. Chem. 2006, 45(2), 521–528. DOI: 10.1021/ic051741±.
  • Heo, J. W.; Hyoung, J.; Hong, S.-T. Unveiling the Intercalation Mechanism in Fe2(MoO4)3 as an Electrode Material for Na-ion Batteries by Structural Determination. Inorg. Chem. 2018. 2. DOI: 10.1021/acs.inorgchem.8b01244.
  • Sears, V. F. Neutron Scattering Lengths and Cross Sections. Neutron News. 1992, 3, 26–37. DOI: 10.1080/10448639208218770.
  • Wang, J.; Toby, B. H.; Lee, P. L.; Ribaud, L.; Antao, S. M.; Kurtz, C.; Ramanathan, M.; Von Dreele, B.; Beno, M. A. A Dedicated Powder Diffraction Beamline at the Advanced Photon Source: Commissioning and Early Operational Results. Rev. Sci. Instrum. 2008, 79(8), 085105. DOI: 10.1063/1.2969260.
  • Toby, B. H. EXPGUI, a Graphical User Interface for GSAS. J. Appl. Crystallogr. 2001, 34, 210–213. DOI: 10.1107/S0021889801002242.
  • Larson, A. C.; Von Dreele, R. B. General Structure Analysis System (GSAS), Techical report; Los Alamos National Laboratory Report LAUR 86-748, 2000.
  • Kubelka, P.; Munk, F. An Article on Optics of Paint Layers. Z. Tech. Phys. 1931, 12, 593–601.
  • Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. Sect. A Found. Crystallogr. 1976, 32, 751–767. DOI: 10.1107/S0567739476001551.
  • Solodovnikov, S. F.; Solodovnikova, Z. A.; Zolotova, E. S.; Yudanova, L. I.; Kardash, T. Y.; Pavlyuk, A. A.; Nadolinny, V. A. Revised Phase Diagram of Li2MoO4-ZnMoO4 System, Crystal Structure and Crystal Growth of Lithium Zinc Molybdate. J. Solid State Chem. 2009, 182(7), 1935–1943. DOI: 10.1016/j.jssc.2009.04.036.
  • Viola, M. C.; Mart´ınez-Lope, M. J.; Alonso, J. A.; Mart´ınez, J. L.; De Paoli, J. M.; Pagola, S.; Pedregosa, J. C.; Ferna´ndez-Diaz, M. T.; Carbonio, R. E. Structure and Magnetic Properties of Sr2CoWO6: An Ordered Double Perovskite Containing Co2+(HS) with Unquenched Orbital Magnetic Moment. Chem. Mater. 2003, 15, 1655–1663. DOI: 10.1021/cm0208455.
  • Mabbs, F. E.; Machin, D. J. Magnetism and Transition Metal Complexes; Chapman and Hall: London, 1973.
  • Smith, A. E.; Comstock, M. C.; Subramanian, M. A. Spectral Properties of the UV Absorbing and near-IR Reflecting Blue Pigment, YIn1−xMnxO3. Dyes Pigm. 2016, 133, 214–221. DOI: 10.1016/j.dyepig.2016.05.029.
  • K¨oferstein, R.; J¨ager, L.; Ebbinghaus, S. G. Magnetic and Optical Investigations on LaFeO3 Powders with Different Particle Sizes and Corresponding Ceramics. Solid State Ionics. 2013, 249–250, 1–5. DOI: 10.1016/j.ssi.2013.07.001.
  • L´opez, R.; G´omez, R. Band-gap Energy Estimation from Diffuse Reflectance Measurements on Sol-gel and Commercial TiO2: A Comparative Study. J. Sol-Gel Sci. Technol. 2012, 61(1), 1–7. DOI: 10.1007/s10971-011-2582-9.
  • Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi B. 1966, 15(2), 627–637. DOI: 10.1002/pssb.19660150224.
  • West, A. R. Solid State Chemistry and Its Applications, 2nd ed.; Student Edition, Wiley: Chichester, 2014.
  • Kingery, W. D.; Bowen, H. K.; Uhlmann, D. R. Introduction to Ceramics, 2nd ed.; Wiley: New York, 1976.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.