1,149
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Selective Removal of Transient Metal Ions from Acid Mine Drainage and the Possibility of Metallic Copper Recovery with Electrolysis

ORCID Icon, ORCID Icon, & ORCID Icon

References

  • Johnson, D.; Dziurla, M. A.; Kolmert, A.; Hallberg, K. B. The Microbiology of Acid Mine Drainage: Genesis and Biotreatment, 2002; Vol. 98.
  • Bwapwa, J. K.; Jaiyeola, A. T.; Chetty, R. Bioremediation of Acid Mine Drainage Using Algae Strains: A Review. S. Afr. J. Chem. Eng. 2017, 24, 62–70. DOI: 10.1016/j.sajce.2017.06.005.
  • Costello, C. Acid Mine Drainage: Innovative Treatment Technologies; U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Technology Innovation Office, 2003.
  • Chen, T.; Yan, B.; Lei, C.; Xiao, X. Pollution Control and Metal Resource Recovery for Acid Mine Drainage. Hydrometallurgy 2014, 147-148, 112–119. DOI: 10.1016/j.hydromet.2014.04.024.
  • Kefeni, K. K.; Msagati, T. A. M.; Mamba, B. B. Acid Mine Drainage: Prevention, Treatment Options, and Resource Recovery: A Review. J. Cleaner Prod. 2017, 151, 475–493. DOI: 10.1016/j.jclepro.2017.03.082.
  • Anawar, H. Sustainable Rehabilitation of Mining Waste and Acid Mine Drainage Using Geochemistry, Mine Type, Mineralogy, Texture, Ore Extraction and Climate Knowledge. J. Environ. Manage. 2015, 158, 111–121. DOI: 10.1016/j.jenvman.2015.04.045.
  • Fitzgerald, G. P.; Faust, S. L. Factors Affecting the Algicidal and Algistatic Properties of Copper. Appl. Microbiol. 1963, 11(4), 345–351. DOI: 10.1128/am.11.4.345-351.1963 (acccessed Sept 7, 2021).
  • Kenefick, S. L.; Hrudey, S. E.; Peterson, H. G.; Prepas, E. E. Toxin Release from Microcystis Aeruginosa After Chemical Treatment. Water Sci. Technol. 1993, 27(3–4), 433–440. DOI: 10.2166/wst.1993.0387 (acccessed Sept 8, 2021).
  • Bury, N. R.; Boyle, D.; Cooper, C. A. 4 - Iron. In Fish Physiology; Wood, C. M., Farrell, A. P., and Brauner, C. J., Eds.; Elsevier Inc. Amsterdam, Netherlands: Academic Press, 2011; Vol. 31, pp 201–251. doi:10.1016/S1546-5098(11)31004-7.
  • Grosell, M.; Wood, C. Copper Uptake Across Rainbow Trout Gills. J. Exp. Biol. 2002, 205, 1179–1188. DOI: 10.1242/jeb.205.8.1179.
  • Di Toro, D. M.; Allen, H. E.; Bergman, H. L.; Meyer, J. S.; Paquin, P. R.; Santore, R. C. Biotic Ligand Model of the Acute Toxicity of Metals. 1. Technical Basis. Environ. Toxicol. Chem. 2001, 20(10), 2383–2396. DOI: 10.1002/etc.5620201034 From NLM.
  • Grosell, M. 2 - Copper. In Fish Physiology; Wood, C. M., Farrell, A. P., and Brauner, C. J., Eds.; Elsevier Inc. Amsterdam, Netherlands: Academic Press, 2011; Vol. 31, pp 53–133. doi:10.1016/S1546-5098(11)31002-3.
  • Mendil, D.; Unal, O. F.; Tüzen, M.; Soylak, M. Determination of Trace Metals in Different Fish Species and Sediments from the River Yeşilirmak in Tokat, Turkey. Food. Chem. Toxicol. 2010, 48(5), 1383–1392. DOI: 10.1016/j.fct.2010.03.006 From NLM.
  • Sole, K. C.; Mooiman, M. B.; Hardwick, E. Ion Exchange in Hydrometallurgical Processing: An Overview and Selected Applications. Sep. Purif. Rev. 2018, 47(2), 159–178, Review. DOI: 10.1080/15422119.2017.1354304 Scopus.
  • Garg, B. S.; Sharma, R. K.; Bhojak, N.; Mittal, S. Chelating Resins and Their Applications in the Analysis of Trace Metal Ions. Microchem. J. 1999, 61(2), 94–114. DOI: 10.1006/mchj.1998.1681.
  • Sparks, D. L. SORPTION | Metals. In Encyclopedia of Soils in the Environment; Hillel, D., Ed.; Newark, USA: Elsevier, 2005; pp 532–537. doi:10.1016/B0-12-348530-4/00554-3.
  • Dinu, M. V.; Dragan, E. S. Heavy Metals Adsorption on Some Iminodiacetate Chelating Resins as a Function of the Adsorption Parameters. React. Funct. Polym. 2008, 68(9), 1346–1354. DOI: 10.1016/j.reactfunctpolym.2008.06.011.
  • Jiang, J.; Ma, X.-S.; Xu, L.-Y.; Wang, L.-H.; Liu, G.-Y.; Xu, Q.-F.; Lu, J.-M.; Zhang, Y. Applications of Chelating Resin for Heavy Metal Removal from Wastewater. e-Polymers 2015, 15(3), 161–167. DOI: 10.1515/epoly-2014-0192.
  • Diniz, C. V.; Doyle, F. M.; Ciminelli, V. S. T. Effect of pH on the Adsorption of Selected Heavy Metal Ions from Concentrated Chloride Solutions by the Chelating Resin Dowex M-4195. Sep. Sci. Technol. 2002, 37(14), 3169–3185. DOI: 10.1081/SS-120006155.
  • Sharma, R. K.; Mittal, S.; Koel, M. Analysis of Trace Amounts of Metal Ions Using Silica-Based Chelating Resins: A Green Analytical Method. Crit. Rev. Anal. Chem. 2003, 33(3), 183–197. DOI: 10.1080/713609163.
  • Platzer, N. Encyclopedia of Polymer Science and Engineering, H. F. Mark, N. M. Bikales, C. G. Overberger, and G. Menges, Wiley-Interscience, New York, 1985, 720 Pp. J. Polym. Sci., Part C 1986, 24(7), 359–360. DOI: 10.1002/pol.1986.140240720.
  • Matejka, Z.; Zitkova, Z. The Sorption of Heavy-Metal Cations from EDTA Complexes on Acrylamide Resins Having Oligo(ethyleneamine) Moieties. React. Funct. Polym. 1997, 35(1), 81–88. DOI: 10.1016/S1381-5148(97)00052-7.
  • Matějka, Z.; Weber, R. Ligand Exchange Sorption of Carboxylic and Aminocarboxylic Anions by Chelating Resins Loaded with Heavy Metal Cations. React. Polym. 1990, 13(3), 299–308. DOI: 10.1016/0923-1137(90)90098-O.
  • Reig, M.; Vecino, X.; Hermassi, M.; Valderrama, C.; Gibert, O.; Cortina, J. L. Integration of Selectrodialysis and Solvent-Impregnated Resins for Zn(ii) and Cu(ii) Recovery from Hydrometallurgy Effluents Containing As(v). Sep. Purif. Technol. 2019, 229, Article. DOI: 10.1016/j.seppur.2019.115818 Scopus.
  • Kołodyńska, D. The Effects of the Treatment Conditions on Metal Ions Removal in the Presence of Complexing Agents of a New Generation. Desalination 2010, 263, 159–169. DOI: 10.1016/j.desal.2010.06.053.
  • Aderhold, D.; Williams, C. J.; Edyvean, R. G. J. The Removal of Heavy-Metal Ions by Seaweeds and Their Derivatives. Bioresour. Technol. 1996, 58(1), 1–6. DOI: 10.1016/S0960-8524(96)00072-7.
  • Edebali, S.; Pehlivan, E. Evaluation of Chelate and Cation Exchange Resins to Remove Copper Ions. Powder Technol. 2016, 301. DOI: 10.1016/j.powtec.2016.06.011.
  • Wołowicz, A.; Hubicki, Z. The Use of the Chelating Resin of a New Generation Lewatit MonoPlus TP-220 with the Bis-Picolylamine Functional Groups in the Removal of Selected Metal Ions from Acidic Solutions. Chem. Eng. J. 2012, 197, 493–508. DOI: 10.1016/j.cej.2012.05.047.
  • Xu, Y.-L.; Song, S.-Y.; Chen, J.-D.; Chi, R.-A.; Yu, J.-X. Simultaneous Recovery of Cu2+ and Pb2+ from Metallurgical Wastewater by Two Tandem Columns Fixed Respectively with Tetraethylenepentamine and Phosphoric Acid Modified Bagasse. J. Taiwan Inst. Chem. Eng. 2019, 99, 132–141. DOI: 10.1016/j.jtice.2019.03.012.
  • Mendes, F. D.; Martins, A. H. Selective Sorption of Nickel and Cobalt from Sulphate Solutions Using Chelating Resins. Int. J. Miner. Process. 2004, 74(1), 359–371. DOI: 10.1016/j.minpro.2004.04.003.
  • Vecino, X.; Reig, M.; López, J.; Valderrama, C.; Cortina, J. L. Valorisation Options for Zn and Cu Recovery from Metal Influenced Acid Mine Waters Through Selective Precipitation and Ion-Exchange Processes: Promotion of On-Site/off-Site Management Options. J. Environ. Manage. 2021, 283, 112004. DOI: 10.1016/j.jenvman.2021.112004.
  • Diniz, C. V.; Ciminelli, V. S. T.; Doyle, F. M. The Use of the Chelating Resin Dowex M-4195 in the Adsorption of Selected Heavy Metal Ions from Manganese Solutions. Hydrometallurgy 2005, 78(3), 147–155. DOI: 10.1016/j.hydromet.2004.12.007.
  • Sengupta, A. K.; Zhu, Y.; Hauze, D. B. Metal (II) Ion Binding Onto Chelating Exchangers with Nitrogen Donor Atoms: Some New Observations and Related Implications. Environ. Sci. Technol. 1991, 25, 481–488. DOI: 10.1021/ES00015A016.
  • Gorgievski, M.; Božić, D.; Stanković, V.; Bogdanović, G. Copper Electrowinning from Acid Mine Drainage: A Case Study from the Closed Mine “Cerovo”. J. Hazard. Mater. 2009, 170(2), 716–721. DOI: 10.1016/j.jhazmat.2009.04.135.
  • Habashi, F. Copper Metallurgy at the Crossroads. J. Min. Metall. 2007, 43(1), 1–19. DOI: 10.2298/JMMB0701001H.
  • Vecino, X.; Reig, M.; Valderrama, C.; Cortina, J. L. Ion-Exchange Technology for Lactic Acid Recovery in Downstream Processing: Equilibrium and Kinetic Parameters. Water (Switzerland) 2021, 13(11), Article. DOI: 10.3390/w13111572 Scopus.
  • Motsi, T.; Rowson, N. A.; Simmons, M. J. H. Adsorption of Heavy Metals from Acid Mine Drainage by Natural Zeolite. Int. J. Miner. Process. 2009, 92(1), 42–48. DOI: 10.1016/j.minpro.2009.02.005.
  • Paidar, M. Copper Remediation from Mine Waste Water in Flow-Through Cell Using a Graphite Felt Cathode; Institute of Chemical Technology Prague: Prague, 1997.
  • Hedrich, S.; Johnson, D. B. Remediation and Selective Recovery of Metals from Acidic Mine Waters Using Novel Modular Bioreactors. Environ. Sci. Technol. 2014, 48(20), 12206–12212. DOI: 10.1021/es5030367.
  • Brar, K. K.; Etteieb, S.; Magdouli, S.; Calugaru, L.; Brar, S. K. Novel Approach for the Management of Acid Mine Drainage (AMD) for the Recovery of Heavy Metals Along with Lipid Production by Chlorella Vulgaris. J. Environ. Manage. 2022, 308, 114507. DOI: 10.1016/j.jenvman.2022.114507.
  • Sole, K. C.; Parker, J.; Cole, P. M.; Mooiman, M. B. Flowsheet Options for Cobalt Recovery in African Copper–Cobalt Hydrometallurgy Circuits. Mineral Process. Extr. Metall. Rev. 2019, 40(3), 194–206, Review. DOI: 10.1080/08827508.2018.1514301 Scopus.
  • Grawunder, A.; Merten, D.; Büchel, G. Origin of Middle Rare Earth Element Enrichment in Acid Mine Drainage-Impacted Areas. Environ. Sci. Pollut. Res. 2014, 21(11), 6812–6823. DOI: 10.1007/s11356-013-2107-x.
  • Richard, D.; Mucci, A.; Neculita, C. M.; Zagury, G. J. Comparison of Organic Materials for the Passive Treatment of Synthetic Neutral Mine Drainage Contaminated by Nickel: Short- and Medium-Term Batch Experiments. Appl. Geochem. 2020, 123, 104772. DOI: 10.1016/j.apgeochem.2020.104772.
  • Ighalo, J. O.; Kurniawan, S. B.; Iwuozor, K. O.; Aniagor, C. O.; Ajala, O. J.; Oba, S. N.; Iwuchukwu, F. U.; Ahmadi, S.; Igwegbe, C. A. A Review of Treatment Technologies for the Mitigation of the Toxic Environmental Effects of Acid Mine Drainage (AMD). Process Saf. Environ. Prot. 2022, 157, 37–58. DOI: 10.1016/j.psep.2021.11.008.
  • LANXESS. Products Information LEWATIT® MonoPlus TP 220. 2011. https://www.lenntech.com/Data-sheets/Lewatit-MonoPlus-TP-220-L.pdf ( accessed).
  • LANXESS. Products Information LEWATIT® TP 208. 2011. https://www.lenntech.com/Data-sheets/Lewatit-MonoPlus-TP-208-L.pdf ( accessed).
  • Purolite International Czech and Slovak Republics, org. sl.
  • Zhao, X.; Höll, W. H.; Yun, G. Elimination of Cadmium Trace Contaminations from Drinking Water. Water Res. 2002, 36(4), 851–858. DOI: 10.1016/S0043-1354(01)00289-5.
  • Walker, A. T. S.; Wragg, A. A. Mass Transfer in Fluidised Bed Electrochemical Reactors. Electrochim. Acta 1980, 25(3), 323–330. DOI: 10.1016/0013-4686(80)90013-4.
  • Bouzek, K.; Palmer, J.; Rousar, I.; Wragg, A. A. Mass Transfer to Wall Electrodes in a Fluidised Bed of Inert Particles. Electrochim. Acta 1996, 41(4), 583–589. DOI: 10.1016/0013-4686(95)00345-2.
  • Paidar, M.; Bouzek, K.; Jelínek, L.; Matějka, Z. A Combination of Ion Exchange and Electrochemical Reduction for Nitrate Removal from Drinking Water. Part II: Electrochemical Treatment of a Spent Regenerant Solution. Water Environ. Res. 2004, 76(7), 2691–2698. DOI: 10.1002/j.1554-7531.2004.tb00231.x.
  • Kołodyńska, D.; Sofińska-Chmiel, W.; Mendyk, E.; Hubicki, Z. DOWEX M 4195 and LEWATIT® MonoPlus TP 220 in Heavy Metal Ions Removal from Acidic Streams. Sep. Sci. Technol. 2014, 49(13), 2003–2015. DOI: 10.1080/01496395.2014.908920.
  • Sahni, S. K.; Reedijk, J. Coordination Chemistry of Chelating Resins and Ion Exchangers. Coord. Chem. Rev. 1984, 59, 1–139. DOI: 10.1016/0010-8545(84)85053-5.
  • Grinstead, R. R. Selective Absorption of Copper, Nickel, Cobalt and Other Transition Metal Ions from Sulfuric Acid Solutions with the Chelating Ion Exchange Resin XFS 4195. Hydrometallurgy 1984, 12(3), 387–400. DOI: 10.1016/0304-386X(84)90009-4.
  • Ajiboye, A. E.; Olasehinde, F. E.; Adebayo, O. A.; Ajayi, O. J. Recovery of Copper and Nickel from Polymetallic Sulphate Leach Solution of Printed Circuit Boards Using Dowex M 4195. Physicochem. Probl. Miner. Process. 2019, 55(5), 1156–1164. DOI: 10.5277/ppmp19038.
  • Park, K. H.; Parhi, P. K.; Kang, N.-H. Studies on Removal of Low Content Copper from the Sea Nodule Aqueous Solution Using the Cationic Resin TP 207. Sep. Sci. Technol. 2012, 47(10), 1531–1541. DOI: 10.1080/01496395.2011.652285.
  • Hubicki, Z.; Kołodyńska, D. Selective Removal of Heavy Metal Ions from Waters and Waste Waters Using Ion Exchange Methods; Kilislioğlu, A., Ed.; Ion Exchange Technologies: London, 2012. DOI: 10.5772/51040.
  • Yuchi, A.; Sato, T.; Morimoto, Y.; Mizuno, H.; Wada, H. Adsorption Mechanism of Trivalent Metal Ions on Chelating Resins Containing Iminodiacetic Acid Groups with Reference to Selectivity. Anal. Chem. 1997, 69(15), 2941–2944. DOI: 10.1021/ac9612685.
  • Wilson, R. Recovery of Copper from Acid Mine Drainage Using Chelating Ion Exchange and Electrolysis. Master’s Degree, University of Chemistry and Technology in Prague, University of Strathclyde, 2018.
  • Akinwekomi, V.; Kefeni, K. K.; Maree, J. P.; Msagati, T. A. M. Integrated Acid Mine Drainage Treatment Using Mg(oh)2 or Mg(hco3)2 and Ca(oh)2: Implications for Separate Removal of Metals and Sulphate. Int. J. Miner. Process. 2016, 155, 83–90. DOI: 10.1016/j.minpro.2016.08.009.
  • Watten, B. J.; Sibrell, P. L.; Schwartz, M. F. Acid Neutralization Within Limestone Sand Reactors Receiving Coal Mine Drainage. Environ. Pollut. 2005, 137(2), 295–304. DOI: 10.1016/j.envpol.2005.01.026.
  • Olds, W. E.; Tsang, D. C. W.; Weber, P. A.; Weisener, C. G. Nickel and Zinc Removal from Acid Mine Drainage: Roles of Sludge Surface Area and Neutralising Agents. J. Min. 2013, 2013, 698031. DOI: 10.1155/2013/698031.