133
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Elimination of the Interfacial Crud in the Extraction of Simulated High-Level Liquid Waste After Denitration in the TRPO Process

, , , , , & show all

References

  • Plans For New Reactors Worldwide. 2022. https://world-nuclear.org/information-library/current-and-future-generation/plans-for-new-reactors-worldwide.aspx.
  • Choppin, G.; Liljenzin, J.-O.; Rydberg, J.; Ekberg, C. Chapter 21 - the Nuclear Fuel Cycle. In Radiochemistry and Nuclear Chemistry, 4th ed.; Choppin, G., Liljenzin, J.-O., Rydberg, J., and Ekberg, C., Eds.; Cambridge, Massachusetts: Academic Press, 2013; pp. 685–751.
  • Rice, N. M.; Irving, H. M. N. H.; Leonard, M. A. Nomenclature for Liquid-Liquid Distribution (Solvent Extraction) (IUPAC Recommendations 1993). Pure Appl. Chem. 1993, 65(11), 2373–2396. DOI:10.1351/pac199365112373. ( acccessed 2023-01-12).
  • Bertelsen, E. R.; Antonio, M. R.; Jensen, M. P.; Shafer, J. C. Electrochemistry of PUREX: R is for Reduction and Ion Transfer. Solvent. Extr. Ion Exch. 2022, 40(1–2), 64–85. DOI: 10.1080/07366299.2021.1920674.
  • Salvatores, M.; Palmiotti, G. Radioactive Waste Partitioning and Transmutation Within Advanced Fuel Cycles: Achievements and Challenges. Prog. Part. Nucl. Phys. 2011, 66(1), 144–166. DOI:10.1016/j.ppnp.2010.10.001. ( Review).
  • Horwitz, E. P.; Kalina, D. G.; Diamond, H.; Vandegrift, G. F.; Schulz, W. W. The TRUEX Process - a Process for the Extraction of the Transuranic Elements from Nitric-Acid Wastes Utilizing Modified PUREX Solvent. Solvent. Extr. Ion Exch. 1985, 3(1–2), 75–109. DOI: 10.1080/07366298508918504.
  • Serrano-Purroy, D.; Baron, P.; Christiansen, B.; Malmbeck, R.; Sorel, C.; Glatz, J. P. Recovery of Minor Actinides from HLLW Using the DIAMEX Process. Radiochim. Acta. 2005, 93(6), 351–355. DOI: 10.1524/ract.93.6.351.65642.
  • Modolo, G.; Vijgen, H.; Serrano-Purroy, D.; Christiansen, B.; Malmbeck, R.; Sorel, C.; Baron, P. DIAMEX Counter-Current Extraction Process for Recovery of Trivalent Actinides from Simulated High Active Concentrate. Sep. Sci. Technol. 2007, 42(3), 439–452. DOI: 10.1080/01496390601120763.
  • Morita, Y.; Glatz, J. P.; Kubota, M.; Koch, L.; Pagliosa, G.; Roemer, K.; Nicholl, A. Actinide Partitioning from HLW in a Continuous DIDPA Extraction Process by Means of Centrifugal Extractors. Solvent. Extr. Ion Exch. 1996, 14(3), 385–400. DOI: 10.1080/07366299608918346.
  • Chen, J.; Wang, J. C. Overview of 30 Years Research on TRPO Process for Actinides Partitioning from High Level Liquid Waste. Prog Chem. 2011, 23(7), 1366–1371.
  • Chen, J.; He, X. H.; Wang, J. C. Nuclear Fuel Cycle-Oriented Actinides Separation in China. Radiochim. Acta. 2014, 102(1–2), 41–51. DOI: 10.1515/ract-2014-2093.
  • Wang, J. C.; Song, C. L. Hot Test of Trialkyl Phosphine Oxide (TRPO) for Removing Actinides from Highly Saline High-Level Liquid Waste (HLLW). Solvent. Extr. Ion Exch. 2001, 19(2), 231–242. DOI: 10.1081/SEI-100102693.
  • Dziwinski, E.; Szymanowski, J. Composition of CYANEX (R) 923, CYANEX (R) 925, CYANEX (R) 921 and TOPO. Solvent. Extr. Ion Exch. 1998, 16(6), 1515–1525. DOI: 10.1080/07366299808934592.
  • Healy, T. V. The Reaction of Nitric Acid with Formaldehyde and with Formic Acid and Its Application to the Removal of Nitric Acid from Mixtures. J. Chem. Technol. Biotechnol. 1958, 8(9), 553–561. DOI: 10.1002/jctb.5010080903.
  • Mishra, S.; Lawrence, F.; Sreenivasan, R.; Pandey, N. K.; Mallika, C.; Koganti, S. B.; Mudali, U. K. Development of a Continuous Homogeneous Process for Denitration by Treatment with Formaldehyde. J. Radioanal. Nucl. Chem. 2010, 285(3), 687–695. DOI: 10.1007/s10967-010-0601-x.
  • Bradley, R. F.; Goodlett, C. B. Denitration of Nitric Acid Solutions by Formic Acid. 1972.
  • Orebaugh. Denitration of Savannah River Plant Waste Streams; Aiken, South Carolina: Savannah River Lab, 1976.
  • Nakamura, H.; Yamaguchi, I.; Kubota, M. Effect of Platinum Group Elements on Denitration of High-Level Liquid Waste with Formic-Acid. J. Nucl. Sci. Technol. 1978, 15(10), 760–764. DOI: 10.1080/18811248.1978.9735584.
  • Kubota, M.; Yamaguchi, I.; Nakamura, H. Effects of Nitrite on Denitration of Nuclear-Fuel Reprocessing Waste with Organic Reductants. J. Nucl. Sci. Technol. 1979, 16(6), 426–433. DOI: 10.1080/18811248.1979.9730922.
  • Kondo, Y.; Matsumura, M.; Kubota, M. Solid Formation Behavior During the Conditioning of Simulated High Level Liquid Waste for Transuranic Elements Extraction. J. Radioanal. Nucl. Chem. 1994, 177(2), 311–320. DOI: 10.1007/BF02061127.
  • Kondo, Y.; Matsumura, M.; Kubota, M. Solid Formation in Simulated High Level Liquid Waste of Relatively Low Nitric Acid Concentration. J. Radioanal. Nucl. Chem. 1994, 177(2), 301–309. DOI: 10.1007/BF02061126.
  • Hwang, D. S.; Lee, E. H.; Kim, K. W.; Lee, K. I.; Park, J. H.; Yoo, J. H.; Park, S. J. Denitration of Simulated High-Level Liquid Waste by Formic Acid. J. Ind. Eng. Chem. 1999, 5(1), 45–51.
  • Kondo, Y. Development of a Safety Denitration Method to Remove Nitric Acid from Mixtures. J. Radioanal. Nucl. Chem. 1999, 240(1), 123–136. DOI: 10.1007/bf02349144.
  • Kondo, Y. Influence of Urea on Initiation and Termination of Reaction Between Nitric Acid and Formic Acid. J. Radioanal. Nucl. Chem. 1999, 242(2), 515–526. DOI: 10.1007/BF02345585.
  • Kondo, Y. Removal of Nitric Acid from a Simulated High Level Liquid Waste by a Safe Chemical Denitration. J. Radioanal. Nucl. Chem. 1999, 242(2), 505–513. DOI: 10.1007/BF02345584.
  • Li, W. B.; Duan, W. H.; Sun, T. X.; Liu, C. J.; Wang, J. C.; Chen, J. Denitration of Simulated High-Level Liquid Waste by Formic Acid for the Connection of PUREX Process with TRPO Process. J. Radioanal. Nucl. Chem. 2017, 314(1), 221–229. DOI: 10.1007/s10967-017-5357-0.
  • Xu, C.; Wang, C.; Wang, J.; Chen, J. Third Phase Formation in the Extraction of Zirconium(iv) by TRPO in Kerosene. Sep. Sci. Technol. 2013, 48(1), 183–191. DOI: 10.1080/01496395.2012.675539.
  • Delegard, C. H.; Casella, A. J. Literature Review: Crud Formation at the Liquid/Liquid Interface of TBP-Based Solvent-Extraction Processes. 2016.
  • Usami, T.; Tsukada, T.; Inoue, T.; Moriya, N.; Hamada, T.; Purroy, D. S.; Malmbeck, R.; Glatz, J. P. Formation of zirconium molybdate sludge from an irradiated fuel and its dissolution into mixture of nitric acid and hydrogen peroxide. J. Nucl. Mater. 2010, 402(2–3), 130–135. DOI: 10.1016/j.jnucmat.2010.05.008.
  • Magnaldo, A.; Masson, M.; Champion, R. Nucleation and crystal growth of zirconium molybdate hydrate in nitric acid. Chem. Eng. Sci. 2007, 62(3), 766–774. DOI: 10.1016/j.ces.2006.08.076.
  • Doucet, F. J.; Goddard, D. T.; Taylor, C. M.; Denniss, I. S.; Hutchison, S. M.; Bryan, N. D. The formation of hydrated zirconium molybdate in simulated spent nuclear fuel reprocessing solutions. Phys. Chem. Chem. Phys. 2002, 4(14), 3491–3499. DOI: 10.1039/b201792j.
  • Arai, T.; Ito, D.; Hirasawa, I.; Miyazaki, Y.; Takeuchi, M. Encrustation Prevention of Zirconium Molybdate Hydrate. Chem. Eng. Technol. 2018, 41(6), 1199–1204. DOI: 10.1002/ceat.201700663.
  • Kondo, Y.; Kubota, M. Formation and filtration characteristics of solids generated in a high level liquid waste treatment process. 1. Solids formation behavior from simulated high level liquid waste. J. Radioanal. Nucl. Chem. 1997, 221(1–2), 45–52. DOI: 10.1007/bf02035241.
  • Kubota, M.; Fukase, T. Formation of precipitate in high-level liquid waste from nuclear-fuel reprocessing. J. Nucl. Sci. Technol. 1980, 17(10), 783–790. DOI: 10.1080/18811248.1980.9732654.
  • Rao, B. S. M.; Gantner, E.; Reinhardt, J.; Steinert, D.; Ache, H. J. Characterization of the solids formed from simulated nuclear-fuel reprocessing solutions. J. Nucl. Mater. 1990, 170(1), 39–49. DOI: 10.1016/0022-3115(90)90324-g.
  • Izumida, T.; Kawamura, F. Precipitates formation behavior in simulated high-level liquid waste of fuel-reprocessing. J. Nucl. Sci. Technol. 1990, 27(3), 267–274. DOI: 10.1080/18811248.1990.9731179.
  • Rao, B. S. M.; Gantner, E.; Muller, H. G.; Reinhardt, J.; Steinert, D.; Ache, H. J. Solids formation from synthetic fuel-reprocessing solutions-characterization of zirconium molybdate by ICP, XRF, and Raman microprobe spectroscopy. Appl. Spectrosc. 1986, 40(3), 330–336. DOI: 10.1366/0003702864509169.
  • Lloyd, M. H. Instabilities and solids formation in lwr reprocessing solutions. Trans. Am. Nucl. Soc. 1976, 24(NOV19), 233–234.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.