2,187
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Interaction Strategies for Effective Augmented Reality Geo-Visualization: Insights from Spatial Cognition

, , &

REFERENCES

  • Abend, P., Thielmann, T., Ewerth, R., Seiler, D., Mühling, M., Döring, J., … Freisleben, B. (2012). Geobrowsing behaviour in google earth – A semantic video content analysis of on-screen navigation. In T. Jekel, A. Car, J. Strobl, & G. Griesebner (Eds.), GI_forum 2012: Geovisualization, society and learning (pp. 2–13). Berlin/Offenbach: Herbert Wichmann Verlag, Salzburg, Austria.
  • Agostinelli, C., & Lund, U. (2017). R package “circular”: Circular statistics (version 0.4-93). Retrieved from https://r-forge.r-project.org/projects/circular/
  • Apple. (2018). Google ARCore. Retrieved July 26, 2018, from https://developers.google.com/ar/
  • Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators and Virtual Environments, 6(4), 355–385. doi:10.1162/pres.1997.6.4.355
  • Baldwin, C. L., & Reagan, I. (2009). Individual differences in route-learning strategy and associated working memory resources. Human Factors, 51(3), 368–377. doi:10.1177/0018720809338187
  • Bediou, B., Adams, D. M., Mayer, R. E., Tipton, E., Green, C. S., & Bavelier, D. (2018). Meta-analysis of action video game impact on perceptual, attentional, and cognitive skills. Psychological Bulletin, 144(1), 77–110. doi:10.1037/bul0000130
  • Beitzel, S., Dykstra, J., Huver, S., Kaplan, M., Loushine, M., & Youzwak, J. (2016). Cognitive performance impact of augmented reality for network operations tasks. In Advances in human factors in cybersecurity. Advances in intelligent systems and computing (Vol. 501, pp. 139–151), D. Nicholson (ed). Cham, Switzerland: Springer. doi:10.1007/978-3-319-41932-9_12
  • Beitzel, S., Dykstra, J., Toliver, P., & Youzwak, J. (2018). Exploring 3D cybersecurity visualization with the microsoft holoLens (pp. 197–207). Cham, Switzerland: Springer. doi:10.1007/978-3-319-60585-2_19
  • Berens, P. (2009). CircStat: A MATLAB toolbox for circular statistics. Journal of Statistical Software, 31(10), 1–21.
  • Besançon, L., Issartel, P., Ammi, M., & Isenberg, T. (2017). Mouse, tactile, and tangible input for 3D manipulation. Proceedings of the CHI 2017 conference on human factors in computing, New York: ACM.doi: 10.1145/3025453.3025863
  • Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., & Çöltekin, A. (2015). Applications of 3D city models: State of the art review. ISPRS International Journal of Geo-Information, 4(4), 2842–2889. doi:10.3390/ijgi4042842
  • Blattgerste, J., Strenge, B., Renner, P., Pfeiffer, T., & Essig, K. (2017). Comparing conventional and augmented reality instructions for manual assembly tasks. Proceedings of the PETRA 2017 international conference on PErvasive technologies related to assistive environments, New York: ACM. doi: 10.1145/3056540.3056547
  • Boot, W. R., Kramer, A. F., Simons, D. J., Fabiani, M., & Gratton, G. (2008). The effects of video game playing on attention, memory, and executive control. Acta Psychologica, 129(3), 387–398. doi:10.1016/j.actpsy.2008.09.005
  • Boud, A. C., Haniff, D. J., Baber, C., & Steiner, S. J. (1999). Virtual reality and augmented reality as a training tool for assembly tasks. Proceedings of the IEEE international conference on information visualization (Cat. No. PR00210) (pp. 32–36), London, UK. IEEE Comput. Soc. doi: 10.1109/IV.1999.781532
  • Bowman, D. A., McMahan, C., Stinson, C., Ragan, E. D., Scerbo, S., Hollerer, T., … Kopper, R. (2012). Evaluating effectiveness in virtual environments with MR simulation. Proceedings of the I/ITSEC 2012 conference on interservice/Industry training, simulation and education, Orlando, FL, USA.
  • Brunyé, T. T., Gardony, A. L., Mahoney, C. R., & Taylor, H. A. (2012). Going to town: Visualized perspectives and navigation through virtual environments. Computers in Human Behavior, 28(1), 257–266. doi:10.1016/j.chb.2011.09.008
  • Brunyé, T. T., & Taylor, H. A. (2008). Extended experience benefits spatial mental model development with route but not survey descriptions. Acta Psychologica, 127(2), 340–354. doi:10.1016/j.actpsy.2007.07.002
  • Brunyé, T. T., & Taylor, H. A. (2009). When goals constrain: Eye movements and memory for goal-oriented map study. Applied Cognitive Psychology, 23(6), 772–787. doi:10.1002/acp.1508
  • Brusilovsky, P., & Millán, E. (2007). User models for adaptive hypermedia and adaptive educational systems. In The adaptive web (pp. 3–53), P. Brusilovsky, A. Kobsa, & W. Nejdl (Eds.). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-540-72079-9_1
  • Buchroithner, M. F., & Knust, C. (2013). True-3D in cartography—current hard- and softcopy developments. In A. Moore & I. Drecki (Eds.), Geospatial visualisation (pp. 41–65). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-12289-7_3
  • Burnett, G. E., & Lee, K. (2005). The effect of vehicle navigation systems on the formation of cognitive maps. In G. Underwood (Ed.), Traffic and transport psychology - theory and application (pp. 407–418). Amsterdam, Oxford, UK: Elsevier.
  • Büschel, W., Reipschläger, P., Langner, R., & Dachselt, R. (2017). Investigating the use of spatial interaction for 3D data visualization on mobile devices. Proceedings of the ISS 2017 conference on interactive surfaces and spaces, New York: ACM. doi: 10.1145/3132272.3134125
  • Calinski, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics - Theory and Methods, 3(1), 1–27. doi:10.1080/03610927408827101
  • Chang, H., & Cohen, M. F. (2017). Panning and Zooming high-resolution panoramas in virtual reality devices. Proceedings of the UIST 2017 symposium on user interface software and technology, New York: ACM. doi: 10.1145/3126594.3126617
  • Cowan, N. (2010). The magical mystery four. Current Directions in Psychological Science, 19(1), 51–57. doi:10.1177/0963721409359277
  • Cui, N., Kharel, P., & Gruev, V. (2017). Augmented reality with microsoft HOLOLENS holograms for near infrared fluorescence based image guided surgery. In B. W. Pogue & S. Gioux (Eds.), Proc. SPIE 10049, molecular-guided surgery: Molecules, devices, and applications III (Vol. 10049, pp. 100490I), New York, NY, USA. International Society for Optics and Photonics. doi: 10.1117/12.2251625
  • Cui, Y., & Ge, S. S. (2003). Autonomous vehicle positioning with GPS in urban canyon environments. IEEE Transactions on Robotics and Automation, 19(1), 15–25. doi:10.1109/ROBOT.2001.932759
  • Darken, R. P., & Cevik, H. (1999). Map usage in virtual environments: Orientation issues. Proceedings IEEE virtual reality (Cat. No. 99CB36316) (pp. 133–140). IEEE Comput. Soc. doi: 10.1109/VR.1999.756944
  • Dey, A., Billinghurst, M., Lindeman, R. W., & Swan, J. E. (2018). A systematic review of 10 years of augmented reality usability studies: 2005 to 2014. Frontiers in Robotics and AI, 5, 37. doi:10.3389/frobt.2018.00037
  • Dünser, A., Billinghurst, M., Wen, J., Lehtinen, V., & Nurminen, A. (2012). Exploring the use of handheld AR for outdoor navigation. Computers & Graphics, 36(8), 1084–1095. doi:10.1016/J.CAG.2012.10.001
  • Ekstrom, R. B. R., French, J. J. W., Harman, H. H., & Dermen, D. (1976). Manual for kit of factor-referenced cognitive tests. Princeton NJ Educational Testing Service, 102(41), 117. doi:10.1073/pnas.0506897102
  • ES3DStudios. (2013). RT organic city 01. Retrieved July 1, 2016, from https://www.turbosquid.com/3d-models/organically-city-max/779190
  • Evans, G. W., & Pezdek, K. (1980). Cognitive mapping: Knowledge of real-world distance and location information. Journal of Experimental Psychology: Human Learning and Memory, 6(1), 13–24. doi:10.1037/0278-7393.6.1.13
  • Fischer, G. (2001). User modeling in human–computer interaction. User Modeling and User-Adapted Interaction, 11(1/2), 65–86. doi:10.1023/A:1011145532042
  • Gardony, A. L., Brunyé, T. T., Mahoney, C. R., & Taylor, H. A. (2013). How navigational aids impair spatial memory: Evidence for divided attention. Spatial Cognition & Computation, 13(4), 319–350.
  • Gardony, A. L., Brunyé, T. T., & Taylor, H. A. (2015). Navigational aids and spatial memory impairment: The role of divided attention. Spatial Cognition and Computation, 15(4). doi:10.1080/13875868.2015.1059432
  • Geisser, S., & Greenhouse, S. W. (1958). An extension of box’s results on the use of the F distribution in multivariate analysis. The Annals of Mathematical Statistics, 29(3), 885–891. doi:10.1214/aoms/1177706545
  • Genolini, C., Alacoque, X., Sentenac, M., & Arnaud, C. (2015). kml and kml3d: R packages to cluster longitudinal data. Journal of Statistical Software, 65(4), 1–34. Retrieved from http://www.jstatsoft.org/v65/i04/
  • Google. (2018). Apple ARKit. Retrieved July 26, 2018, from https://developer.apple.com/arkit/
  • Gras, D., Gyselinck, V., Perrussel, M., Orriols, E., & Piolino, P. (2012). The role of working memory components and visuospatial abilities in route learning within a virtual environment. Journal of Cognitive Psychology, 1–13. doi:10.1080/20445911.2012.739154
  • Greenlight Insights. (2018). 2018 augmented reality industry report. Retrieved July 27, 2018, from https://greenlightinsights.com/industry-analysis/2018-augmented-reality-industry-report/
  • Hackett, M., & Proctor, M. (2016). Three-dimensional display technologies for anatomical education: A literature review. Journal of Science Education and Technology, 25(4), 641–654. doi:10.1007/s10956-016-9619-3
  • Hedley, N. R., Billinghurst, M., Postner, L., May, R., & Kato, H. (2002). Explorations in the use of augmented reality for geographic visualization. Presence: Teleoperators and Virtual Environments, 11(2), 119–133. doi:10.1162/1054746021470577
  • Hegarty, M., Richardson, A. E., Montello, D. R., Lovelace, K., & Subbiah, I. (2002). Development of a self-report measure of environmental spatial ability. Intelligence, 30(5), 425–448. doi:10.1016/S0160-2896(02)00116-2
  • Hegarty, M., Smallman, H. S., Stull, A. T., & Canham, M. S. (2009). Naïve cartography: How intuitions about display configuration can hurt performance. Cartographica: the International Journal for Geographic Information and Geovisualization, 44(3), 171–186. doi:10.3138/carto.44.3.171
  • Hegarty, M., & Waller, D. (2004). A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence, 32(2), 175–191. doi:10.1016/j.intell.2003.12.001
  • Herman, L., & Stachoň, Z. (2016). Comparison of user performance with interactive and static 3D visualization-pilot study. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B2, 655–661. doi:10.5194/isprs-archives-XLI-B2-655-2016
  • Hills, T. T., Todd, P. M., Lazer, D., Redish, A. D., & Couzin, I. D. (2015). Exploration versus exploitation in space, mind, and society. Trends in Cognitive Sciences, 19(1), 46–54. doi:10.1016/J.TICS.2014.10.004
  • Hockett, P., & Ingleby, T. (2016). Augmented reality with hololens: Experiential architectures embedded in the real world. Retrieved from http://arxiv.org/abs/1610.04281
  • Hoffman, M. A. (2016). The future of three-dimensional thinking. Science, 353(6302), 876. doi:10.1126/science.aah5394
  • Ishikawa, T., & Montello, D. R. (2006). Spatial knowledge acquisition from direct experience in the environment: Individual differences in the development of metric knowledge and the integration of separately learned places. Cognitive Psychology, 52(2), 93–129. doi:10.1016/j.cogpsych.2005.08.003
  • Jankowski, J., & Hachet, M. (2015). Advances in interaction with 3D environments. Computer Graphics Forum, 34(1), 152–190. doi:10.1111/cgf.12466
  • Karmonik, C., Boone, T. B., & Khavari, R. (2017). Workflow for visualization of neuroimaging data with an augmented reality device. Journal of Digital Imaging, 1–6. doi:10.1007/s10278-017-9991-4
  • Keehner, M., Hegarty, M., Cohen, C., Khooshabeh, P., & Montello, D. (2008). Spatial reasoning with external visualizations: What matters is what you see, not whether you interact. Cognitive Science: A Multidisciplinary Journal, 32(7), 1099–1132. doi:10.1080/03640210801898177
  • Knibbe, J., Schjerlund, J., Petraeus, M., & Hornbæk, K. (2018). The dream is collapsing. Proceedings of the 2018 CHI conference on human factors in computing systems, New York: ACM. doi: 10.1145/3173574.3174057
  • Kozhevnikov, M., Motes, M. A., & Hegarty, M. (2007). Spatial visualization in physics problem solving. Cognitive Science, 31(4), 549–579. doi:10.1080/15326900701399897
  • Krichenbauer, M., Yamamoto, G., Taketom, T., Sandor, C., & Kato, H. (2018). Augmented reality versus virtual reality for 3D object manipulation. IEEE Transactions on Visualization and Computer Graphics, 24(2), 1038–1048. doi:10.1109/TVCG.2017.2658570
  • Kun, A., van der Meulen, H., & Janssen, C. (2017). Calling while driving: An initial experiment with hololens. Proceeings of the international driving symposium on human factors in driver assessment, training and vehicle design 2017, Manchester Village, VT, USA. Retrieved from http://drivingassessment.uiowa.edu/sites/default/files/DA2017/papers/32_AndrewKun_CallingWhileDriving_VersionA.pdf
  • Lages, W. S., & Bowman, D. A. (2018). Move the object or move myself? walking vs. manipulation for the examination of 3D scientific data. Frontiers in ICT, 5, 15. doi:10.3389/fict.2018.00015
  • Lee, P. U., & Tversky, B. (2005). Interplay between visual and spatial: The effect of landmark descriptions on comprehension of route/survey spatial descriptions. Spatial Cognition and Computation, 5(2–3), 163–185. doi:10.1207/s15427633scc052&3_4
  • Levelt, W. J. M. (1982). Cognitive styles in the use of spatial direction terms. In R. J. Jarvella & W. Klein (Eds.), Speech, place, and action: Studies in deixis and related topics (pp. 251–268). Chichester, England: Wiley.
  • Linde, C., & Labov, W. (1975). Spatial networks as a site for the study of language and thought. Language, 51(4), 924–939. doi:10.2307/412701
  • Loomis, J. M., Klatzky, R. L., Golledge, R. G., & Philbeck, J. W. (1999). Human navigation by path integration. In R. G. Golledge (Ed.), Wayfinding: Cognitive mapping and other spatial processes (pp. 125–151). Baltimore, MD, US: Johns Hopkins University Press.
  • Marzo, A., Bossavit, B., & Hachet, M. (2014). Combining multi-touch input and device movement for 3D manipulations in mobile augmented reality environments. Proceedings of the SUI 2014 symposium on spatial user interaction, Honolulu, HI, USA: ACM. doi: 10.1145/2659766.2659775
  • McGahan, M. (2014). Perspective switching in virtual environments. Unpublished Doctoral Dissertation. 127, ProQuest Dissertations Publishing, Ann Arbor, MI, USA.
  • Mechdyne Corporation. (2016). CAVE virtual reality. Retrieved January 7, 2016, from http://www.mechdyne.com/hardware.aspx?name=CAVE
  • Mendes, D., Caputo, F. M., Giachetti, A., Ferreira, A., & Jorge, J. (2018). A survey on 3D virtual object manipulation: From the desktop to immersive virtual environments. Computer Graphics Forum. doi:10.1111/cgf.13390
  • Microsoft. (2016). Microsoft HoloLens. Retrieved January 7, 2016, from https://www.microsoft.com/en-us/hololens
  • Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE Transactions on Information Systems, E77–D(12). Retrieved from citeulike-article-id:477597
  • Moffat, S. D., Hampson, E., & Hatzipantelis, M. (1998). Navigation in a “virtual” maze: Sex differences and correlation with psychometric measures of spatial ability in humans. Evolution and Human Behavior, 19(2), 73–87. doi:10.1016/S1090-5138(97)00104-9
  • Montello, D. R. (1993). Scale and multiple psychologies of space. Proceedings of the COSIT 1999 conference on spatial information theory: a theoretical basis for GIS, Berlin: Springer.
  • Montello, D. R. (1998). A new framework for understanding the acquisition of spatial knowledge in large-scale environments. In M. J. Egenhofer & R. G. Golledge (Eds.), Spatial and temporal reasoning in geographic information systems (pp. 143–154). New York, NY, US: Oxford University Press.
  • Montello, D. R. (2005). Navigation. In P. Shah & A. Miyake (Eds.), The Cambridge handbook of visuospatial thinking (Vol. 18, pp. 257–294). New York, NY, US: Cambridge University Press.
  • Morgan, J. M. (2012). US army land navigation in the 21st century. Retrieved from http://www.dtic.mil/docs/citations/ADA563009
  • Mountain, D., & Liarokapis, F. (2005). Interacting with virtual reality scenes on mobile devices. Proceedings of the MobileHCI 2005 international conference on human computer interaction with mobile devices & services, New York, NY: ACM. doi: 10.1145/1085777.1085851
  • Münzer, S., & Hölscher, C. (2011). Entwicklung und validierung eines fragebogens zu räumlichen strategien. Diagnostica, 57(3), 111–125. doi:10.1026/0012-1924/a000040
  • Neis, P., & Zielstra, D. (2014). Recent developments and future trends in volunteered geographic information research: The case of openStreetMap. Future Internet, 6(1), 76–106. doi:10.3390/fi6010076
  • Nex, F., & Remondino, F. (2014). UAV for 3D mapping applications: A review. Applied Geomatics, 6(1), 1–15. doi:10.1007/s12518-013-0120-x
  • Nurminen, A. (2008). Mobile 3D city maps. IEEE Computer Graphics and Applications, 28(4), 20–31. doi:10.1109/MCG.2008.75
  • Nurminen, A., & Oulasvirta, A. (2008). Designing interactions for navigation in 3D mobile maps. In Map-based mobile services (pp. 198–227), Eds. L. Meng, A. Zipf, & S. Winter. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-540-37110-6_10
  • Ong, S. (2017). Beginning windows mixed reality programming. Berkeley, CA: Apress. doi:10.1007/978-1-4842-2769-5
  • Oulasvirta, A., Estlander, S., & Nurminen, A. (2009). Embodied interaction with a 3D versus 2D mobile map. Personal and Ubiquitous Computing, 13(4), 303–320. doi:10.1007/s00779-008-0209-0
  • Passini, R. (1984). Spatial representations, a wayfinding perspective. Journal of Environmental Psychology, 4(2), 153–164. doi:10.1016/S0272-4944(84)80031-6
  • Pazzaglia, F., & De Beni, R. (2001). Strategies of processing spatial information in survey and landmark-centred individuals. European Journal of Cognitive Psychology, 13(4), 493–508. doi:10.1080/09541440042000124
  • Perrig, W., & Kintsch, W. (1985). Propositional and situational representations of text. Journal of Memory and Language, 24(5), 503–518. doi:10.1016/0749-596X(85)90042-7
  • Rakkolainen, I., & Vainio, T. (2001). A 3D City Info for mobile users. Computers & Graphics, 25(4), 619–625. doi:10.1016/S0097-8493(01)00090-5
  • Richardson, A. E., & Collaer, M. L. (2011). Virtual navigation performance: The relationship to field of view and prior video gaming experience. Perceptual and Motor Skills, 112(2), 477–498. doi:10.2466/22.24.PMS.112.2.477-498
  • Richardson, A. E., Montello, D. R., & Hegarty, M. (1999). Spatial knowledge acquisition from maps and from navigation in real and virtual environments. Memory & Cognition, 27(4), 741–750.
  • Richardson, A. E., Powers, M. E., & Bousquet, L. G. (2011). Video game experience predicts virtual, but not real navigation performance. Computers in Human Behavior, 27(1), 552–560. doi:10.1016/j.chb.2010.10.003
  • Ruddle, R. A., Payne, S. J., & Jones, D. M. (1999). The effects of maps on navigation and search strategies in very-large-scale virtual environments. Journal of Experimental Psychology: Applied, 5(1), 54–75. doi:10.1037/1076-898X.5.1.54
  • Saenz, M., Baigelenov, A., Hung, Y.-H., & Parsons, P. (2017). Reexamining the cognitive utility of 3D visualizations using augmented reality holograms. Proceedings of the 2017 IEEE VIS Workshop on Immersive Analytics: Exploring Future Visualization and Interaction Technologies for Data Analytics. Phoenix, Arizona.
  • Sala, G., Tatlidil, K. S., & Gobet, F. (2018). Video game training does not enhance cognitive ability: A comprehensive meta-analytic investigation. Psychological Bulletin, 144(2), 111–139. doi:10.1037/bul0000139
  • Scarfe, P., & Glennerster, A. (2015). Using high-fidelity virtual reality to study perception in freely moving observers. Journal of Vision, 15(9), 3. doi:10.1167/15.9.3
  • Schultz, K. (1991). The contribution of solution strategy to spatial performance. Canadian Journal of Psychology, 45(4), 474–491. doi:10.1037/h0084301
  • Shelton, A. L., & Gabrieli, J. D. E. (2004). Neural correlates of individual differences in spatial learning strategies. Neuropsychology, 18(3), 442–449. doi:10.1037/0894-4105.18.3.442
  • Shelton, B., & Hedley, N. (2004). Exploring a cognitive basis for learning spatial relationships with augmented reality. Technology, Instruction, Cognition and Learning, 1(4). Retrieved from http://digitalcommons.usu.edu/itls_facpub/92
  • Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(3972), 701–703. doi:10.1126/science.171.3972.701
  • Shepherd, I. D. (2008). Travails in the third dimension: A critical evaluation of three-dimensional geographical visualization. In M. Dodge, M. McDerby, & M. Turner (Eds.), Geographic visualization: Concepts, tools and applications (pp. 199–222). Chichester, England, UK: Wiley.
  • Shovman, M., Bown, J., Szymkowiak, A., & Scott-Brown, K. C. (2015). Twist and learn. Proceedings of the CHI 2015 conference on human factors in computing systems, New York, NY: ACM. doi: 10.1145/2702123.2702201
  • Simpson, M., Zhao, J., & Klippel, A. (2017). Take a walk: Evaluating movement types for data visualization in immersive virtual reality. IEEE VIZ. Phoenix, AZ. Retrieved from http://www.aviz.fr/~bbach/immersive2017/papers/IA_1946-paper.pdf
  • Smallman, H. S., & John, M. S. (2005). Naive realism: Misplaced faith in realistic displays. Ergonomics in Design: the Quarterly of Human Factors Applications, 13(3), 6–13. doi:10.1177/106480460501300303
  • Spicer, R. P., Russell, S. M., & Rosenberg, E. S. (2017). The mixed reality of things: Emerging challenges for human-information interaction. In T. P. Hanratty & J. Llinas (Eds.), International society for optics and photonics (Vol. 10207, pp. 102070A), SPIE, Bellingham, WA, USA. doi: 10.1117/12.2268004
  • Špriňarová, K., Juřík, V., Šašinka, Č., Herman, L., Štěrba, Z., Stachoň, Z., … Kozlíková, B. (2015). Human-computer interaction in real-3D and Pseudo-3D cartographic visualization: A comparative study. In C. Robbi Sluter, C. B. Madureira Cruz, & P. M. de Menezes (Eds.), Cartography - maps connecting the world: 27th international cartographic conference 2015 - ICC2015 (pp. 59–73). Cham, Switzerland: Springer International Publishing. doi:10.1007/978-3-319-17738-0_5
  • Stannus, S., Lucieer, A., & Fu, W.-T. (2014). Natural 7DoF navigation & interaction in 3D geovisualisations. Proceedings of the VRST 2014 symposium on virtual reality software and technology. New York, NY: ACM. doi: 10.1145/2671015.2671131
  • Steinicke, F., Benko, H., Krüger, A., Keefe, D., de la Riviére, J.-B., Anderson, K., … Pakanen, M. (2012). The 3rd dimension of CHI (3DCHI). Proceedings of the CHI EA 2012 annual conference extended abstracts on human factors in computing, New York, NY: ACM. doi: 10.1145/2212776.2212698
  • Stoakley, R., Conway, M. J., & Pausch, R. (1995). Virtual reality on a WIM. Proceedings of the SIGCHI 1995 conference on human factors in computing systems, New York, NY: ACM. doi: 10.1145/223904.223938
  • Taylor, H. A., Brunyé, T. T., & Taylor, S. T. (2008). Spatial mental representation: Implications for navigation system design. Reviews of Human Factors and Ergonomics, 4(1), 1–40. doi:10.1518/155723408X342835
  • Taylor, H. A., Naylor, S. J., & Chechile, N. A. (1999). Goal-specific influences on the representation of spatial perspective. Memory & Cognition, 27(2), 309–319.
  • Thorndyke, P. W., & Hayes-Roth, B. (1982). Differences in spatial knowledge acquired from maps and navigation. Cognitive Psychology, 14(4), 560–589. doi:10.1016/0010-0285(82)90019-6
  • Vovk, A., Wild, F., Guest, W., & Kuula, T. (2018). Simulator sickness in augmented reality training using the microsoft hololens. Proceedings of the CHI 2018 Conference on Human Factors in Computing, New York, NY: ACM. doi: 10.1145/3173574.3173783
  • Wiehr, F., Daiber, F., Kosmalla, F., & Krüger, A. (2017). ARTopos. Proceedings of the UbiComp 2017 international joint conference on pervasive and ubiquitous computing and international symposium on wearable computers, New York, NY: ACM. doi: 10.1145/3123024.3124446
  • Wilkening, J., & Fabrikant, S. I. (2013). How users interact with a 3D geo-browser under time pressure. Cartography and Geographic Information Science, 40(1), 40–52. doi:10.1080/15230406.2013.762140
  • Zacks, J. M., Mires, J., Tversky, B., & Hazeltine, E. (2000). Mental spatial transformations of objects and perspective. Spatial Cognition and Computation, 2(4), 315–332. doi:10.1023/A:1015584100204

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.