221
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Nanoscale Effect on Thermal Decomposition of 2,2′,4,4′,6,6′-Hexanitrostilbene by Dynamic Pressure Measuring Thermal Analysis

, , , &

REFERENCES

  • Singh , S. and H. S. Nalwa . 2007 . Nanotechnology and health safety—Toxicity and risk assessments of nanostructured materials on human health . Journal of Nanoscience and Nanotechnology , 7 : 3048 – 3070 .
  • Tour , J. M. 2007 . Transition to organic materials science. Passive, active, and hybrid nanotechnologies . Journal of Organic Chemistry , 72 : 7477 – 7496 .
  • Briggs , B. D. and M. R. Knecht . 2012 . Nanotechnology meets biology: Peptide-based methods for the fabrication of functional materials . Journal of Physical Chemistry Letters , 3 : 405 – 418 .
  • Chakrabarti , A. and N. S. Hosmane . 2012 . Nanotechnology-driven chemistry of boron materials . Pure and Applied Chemistry , 84 : 2299 – 2308 .
  • Service , R. F. 2008 . Nanotechnology—Can high-speed tests sort out which nanomaterials are safe? Science , 321 : 1036 – 1037 .
  • de la Torre , G. , C. G. Claessens , and T. Torres . 2007 . Phthalocyanines: Old dyes, new materials. Putting color in nanotechnology . Chemical Communications , 2000 – 2015 doi: 10.1039/B614234F .
  • Evans , J. 2011 . “Osmotic shock” to make nanoporous materials (Nanotechnology) . Chemistry & Industry . http://www.highbeam.com/doc/1G1-277601098.html
  • Lang , Y. , R. R. Arnepalli , and A. Tiwari . 2011 . A review on hydrogen production: Methods, materials and nanotechnology . Journal of Nanoscience and Nanotechnology , 11 : 3719 – 3739 .
  • Aono , M. , Y. Bando , and K. Ariga . 2012 . Nanoarchitectonics: Pioneering a new paradigm for nanotechnology in materials development . Advanced Materials , 24 : 150 – 151 .
  • Pitcher , M. W. 2006 . Nanochemistry—A chemical approach to nanomaterials . Science , 313 : 300 – 300 .
  • Castagnino , J. M. 2007 . Techniques, materials and applications in nanotechnology . Acta Bioquimica Clinica Latinoamericana , 41 : 189 – 191 .
  • Engel , E. , A. Michiardi , M. Navarro , D. Lacroix , and J. A. Planell . 2008 . Nanotechnology in regenerative medicine: The materials side . Trends in Biotechnology , 26 : 39 – 47 .
  • Goodnick , S. , A. Korkin , P. Krstic , P. Mascher , J. Preston , and A. Zaslavsky . 2010 . Semiconductor nanotechnology: Novel materials and devices for electronics, photonics and renewable energy applications . Nanotechnology , 21 : 130201 – 130202 .
  • Ahn , J.-H. , H.-S. Kim , K. J. Lee , S. Jeon , S. J. Kang , Y. Sun , R. G. Nuzzo , and J. A. Rogers . 2006 . Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials . Science , 314 : 1754 – 1757 .
  • Hubbell , J. A. and A. Chilkoti . 2012 . Nanomaterials for drug delivery . Science , 337 : 303 – 305 .
  • De Kwaadsteniet , M. , M. Botes , and T. E. Cloete . 2011 . Application of nanotechnology in antimicrobial coatings in the water industry . Nano , 6 : 395 – 407 .
  • Szymanski , P. , M. Markowicz , and E. Mikiciuk-Olasik . 2011 . Nanotechnology in pharmaceutical and biomedical applications, dendrimers . Nano , 6 : 509 – 539 .
  • Wang , H. , Yu , Y. , Sun , Y. , and Chen , Q. 2011 . Magnetic nanochains: A review . Nano , 6 : 1 – 17 .
  • Adikaari , A. A. D. T. and S. R. P. Silva . 2008 . Excimer laser crystallization and nanostructuring of amorphous silicon for photovoltaic applications . Nano , 3 : 117 – 126 .
  • Han , X. , Z. Zhang , and Z. L. Wang . 2007. Experimental nanomechanics of one-dimensional nanomaterials by in situ microscopy. Nano , 2:249–271.
  • Valentini , F. , M. Carbone , and G. Palleschi . 2013 . Nanomaterials applied in medicine, cultural heritage and chemical sensor technology . International Journal of Nanotechnology , 10 : 508 – 522 .
  • Stoddart , S. T. , R. J. A. Hill , A. C. Neumann , P. C. Main , A. Nogaret , L. Eaves , M. Henini , and S. P. Beaumont . 2000 . Phase coherence and size effects in double quantum well mesoscopic wires . Physica E , 6 : 672 – 675 .
  • Awschalom , D. D. , D. P. Divincenzo , and J. F. Smyth . 1992 . Macroscopic quantum effects in nanometer-scale magnets . Science , 258 : 414 – 421 .
  • Nagaev , E. L. 1992 . Equilibrium and quasi-equilibrium properties of small particles . Physics Reports - Review Section of Physics Letters , 222 : 199 – 307 .
  • Tyshetskiy , Y. and S. V. Vladimirov . 2011 . Quantum-tunneling-enhanced charging of nanoparticles in plasmas . Physical Review E. doi: http://dx.doi.org/10.1103/PhysRevE.83.046406 .
  • Ovchinnikov , Y. N. , A. Barone , and A. A. Varlamov . 2008 . Effect of magnetic field on macroscopic quantum tunneling escape time in small Josephson junctions . Physical Review B. doi: http://dx.doi.org/10.1103/PhysRevB.78.054521 .
  • Achuthan , C. P. , S. S. Samudre , and J. S. Gharia . 1984 . Hexanitrostilbene—A heat-resistant explosive . Journal of Scientific & Industrial Research , 43 : 197 – 199 .
  • Minier , L. M. and J. C. Oxley . 1990 . Thermolysis of nitroarenes—2,2′,4,4′,6,6′-hexanitrostilbene . Thermochimica Acta , 166 : 241 – 249 .
  • Kony , M. , I. J. Dagley , and D. J. Whelan . 1992 . Deuterium-isotope effects on the rates of thermal-decomposition of 2,2′,4,4′,6,6′-hexanitrostilbene in the condensed phase . Journal of Physical Chemistry , 96 : 8001 – 8006 .
  • Smit , K. J. 1992 . Influence of steric effects of the excited triplet-state lifetime of 2,2′-dinitrostilbene and 2,2′,4,4′,6,6′-hexanitrostilbene in acetonitrile solution . Journal of Physical Chemistry , 96 : 6555 – 6558 .
  • da Silva , G. , G. F. Martins Pinheiro , K. Iha , R. de Cassia Lazzarini Dutra , M. F. Koyama Takahashi , and T. B. dos Reis . 2006 . Characterization of 2,2′,4,4′,6,6′-hexanitrostilbene by instrumental analysis . Quimica Nova , 29 : 681 – 684 .
  • Fu , X. , Y. Zhang , S. Shi , F. Gao , D. Wen , W. Li , Y. Liao , and H. Liu . 2006 . Fragmentation study of hexanitrostilbene by ion trap multiple mass spectrometry and analysis by liquid chromatography/mass spectrometry . Rapid Communications in Mass Spectrometry , 20 : 2906 – 2914 .
  • Shu , X. , Y. Tian , G. Song , H. Zhang , B. Kang , C. Zhang , Y. Liu , X. Liu , and J. Sun . 2011 . Thermal expansion and theoretical density of 2,2′,4,4′,6,6′-hexanitrostilbene . Journal of Materials Science , 46 : 2536 – 2540 .
  • Bates , J. R. , W. W. Lauderdale , and H. Kernaghan . 1979 . NASA Reference Publication 1036: ALSEP Termination Report . Virginia : NASA Scientific and Technical Information Office .
  • Setchell , R. E. 1984 . Grain-size effects on the shock sensitivity of hexanitrostilbene (HNS) explosive . Combustion and Flame , 56 : 343 – 345 .
  • Pivkina , A. , Y. Frolov , S. Zavyalov , P. Ul'yanova , and J. Schoonman . 2003 . Thermal properties of nanosized energetic materials. Proceedings of 30th International Polytechnics Seminar, pp. 555–572, June 23–27, San Malo, France.
  • Nafday , O. A. , R. Pitchimani , B. L. Weeks , and J. Haaheim . 2006 . Patterning high explosives at the nanoscale . Propellants, Explosives, Pyrotechnics , 31 : 376 – 381 .
  • Nandi , A. K. , S. M. Kasar , U. Thanigaivelan , M. Ghosh , A. K. Mandal , and S. C. Bhattacharyya . 2007 . Synthesis and characterization of ultrafine TATB . Journal of Energetic Materials , 25 : 213 – 231 .
  • Stasio , A. D. , S. Singh , and P. Samuels . 2009 . Nano energetics for insensitive booster explosives . In Eighth International Symposium on Special Topics in Chemical Propulsion, Advancements in Energetic Materials & Chemical Propulsion, November 2–6, Cape Town, South Africa .
  • Rieckmann , T. , S. Volker , L. Lichtblau , and R. Schirra . 2001 . Thermal decomposition of hexanitrostilbene at low temperatures . Journal of Analytical and Applied Pyrolysis , 58 : 569 – 587 .
  • Rieckmann , T. , S. Volker , L. Lichtblau , and R. Schirra . 2001 . Investigation on the thermal stability of hexanitrostilbene by thermal analysis and multivariate regression . Chemical Engineering Science , 56 : 1327 – 1335 .
  • Talawar , M. B. , A. P. Agarwal , A. Anniyappan , G. M. Gore , S. N. Asthana , and S. Venugopalan . 2006 . Method for preparation of fine TATB (2–5 µm) and its evaluation in plastic bonded explosive (PBX) formulations . Journal of Hazardous Materials , 137 : 1848 – 1852 .
  • Bellamy , A. J. 2010 . Synthesis of hexanitrostilbene (HNS) using a Kenics static mixer . Organic Process Research & Development , 14 : 632 – 639 .
  • Zeng , G. , F. Nie , H. Huang , Z. Qiao , and W. Yu . 2010. Microstructures of submicron TATB and their effects on TATB thermal properties. Science and Technology of Energetic Materials , 71:8–10.
  • Yang , L. , X. Ren , T. Li , S. Wang , and T. Zhang . 2012 . Preparation of ultrafine TATB and the technology for crystal morphology control . Chinese Journal of Chemistry , 30 : 293 – 298 .
  • Lu , T. , K. Yao , Y. Mao , J. Xu , P. Wang , and M. Lu . 2013 . A novel and efficient synthesis of hexanitrostilbene by N-hydroxyphthalimide/FeCl2-catalyzed aerobic dehydrogenation of hexanitrobibenzyl . Journal of Energetic Materials , 31 : 217 – 223 .
  • Vyazovkin , S. , A. K. Burnham , J. M. Criado , L. A. Perez-Maqueda , C. Popescu , and N. Sbirrazzuoli . 2011 . ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data . Thermochimica Acta , 520 : 1 – 19 .
  • Kaur , J. , V. P. Arya , G. Kaur , Y. P. Gupta , M. M. Verma , and P. Lata . 2010 . Determination of solvent contamination and characterization of ultrafine HNS particles after solvent recrystallization . Propellants, Explosives, Pyrotechnics , 35 : 487 – 493 .
  • Huang , H. , J. Wang , W. Xu , and R. Xie . 2009 . Effect of habit modifiers on morphology and properties of nano-HNS explosive in prefilming twin-fluid nozzle-assisted precipitation . Propellants, Explosives, Pyrotechnics , 34 : 78 – 83 .
  • Wang , J. , H. Huang , W. Z. Xu , Y. R. Zhang , B. Lu , R. Z. Xie , P. Wang , and N. Yun . 2009 . Prefilming twin-fluid nozzle assisted precipitation method for preparing nanocrystalline HNS and its characterization . Journal of Hazardous Materials , 162 : 842 – 847 .
  • Liu , R. , Z. Zhou , Y. Yin , L. Yang , and T. Zhang . 2012 . Dynamic vacuum stability test method and investigation on vacuum thermal decomposition of HMX and CL-20 . Thermochimica Acta , 537 : 13 – 19 .
  • 1997. GJB 772A-97. Method 501.2: Vacuum stability test—Method of pressure transducer. Beijing: Commission of Science Technology and Industry for National Defense .
  • 2006. GJB 5891.12–2006. Test method of loading material for initiating explosive device—Part 12: Vacuum stability test—Method of pressure transducer. Beijing: Commission of Science Technology and Industry for National Defense .
  • Feairheller , W. R. , T. A. Donaldson , and R. Thorpe . 1998 . Recrystallization of HNS for the preparation of detonator grade explosive material. Ohio: Monsanto Research Corporation. NTIS Issue Number: 8903, Accession Number: DE88012862.
  • Liu , R. , T. Zhang , L. Yang , Z. Zhou , and X. Hu . 2013 . Research on thermal decomposition of trinitrophloroglucinol salts by DSC, TG and DVST . Central European Journal of Chemistry , 11 : 774 – 781 .
  • Sun , J. , M. L. Pantoya , and S. L. Simon . 2006 . Dependence of size and size distribution on reactivity of aluminum nanoparticles in reactions with oxygen and MoO3 . Thermochimica Acta , 444 : 117 – 127 .
  • Fathollahi , M. , B. Mohammadi , and J. Mohammadi . 2013 . Kinetic investigation on thermal decomposition of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) nanoparticles . Fuel , 104 : 95 – 100 .
  • Fathollahi , M. , S. M. Pourmortazavi , and S. G. Hosseini . 2008 . Particle size effects on thermal decomposition of energetic material . Journal of Energetic Materials , 26 : 52 – 69 .
  • Reid , D. L. , K. R. Kreitz , M. A. Stephens , J. E. S. King , P. Nachimuthu , E. L. Petersen , and S. Seal . 2011 . Development of highly active titania-based nanoparticles for energetic materials . Journal of Physical Chemistry C , 115 : 10412 – 10418 .
  • Spitzer , D. , C. Baras , M. R. Schaefer , F. Ciszek , and B. Siegert . 2011 . Continuous crystallization of submicrometer energetic compounds . Propellants, Explosives, Pyrotechnics , 36 : 65 – 74 .
  • Spitzer , D. , M. Comet , C. Baras , V. Pichot , and N. Piazzon . 2010 . Energetic nano-materials: Opportunities for enhanced performances . The Journal of Physics and Chemistry of Solids , 71 : 100 – 108 .
  • Liu , J. , J. Chen , Z. Fang , and L. Zeng . 2012 . A simple and sensitive sensor for rapid detection of sulfide anions using DNA-templated copper nanoparticles as fluorescent probes . Analyst , 137 : 5502 – 5505 .
  • Sharma , G. , J. Varshney , A. C. Bidaye , and J. K. Chakravartty . 2012 . Grain growth characteristics and its effect on deformation behavior in nanocrystalline Ni . Materials Science and Engineering A – Structural Materials Properties Microstructure and Processing , 539 : 324 – 329 .
  • Hu , R. Z. , S. L. Gao , F. Q. Zhao , Q. Z. Shi , T. L. Zhang , and J. J. Zhang . 2008 . Thermal Analysis Kinetics . , 2nd ed . Beijing : Science Press (in Chinese) .
  • Upadhyay , S. K. 2006 . Chemical Kinetics and Reaction Dynamics . New York : Springer .
  • Chu , S. J. 1994 . Thermal Analyses of Explosives . Beijing : Science Press (in Chinese) .
  • Long , G. T. , B. A. Brems , and C. A. Wight . 2002. Thermal activation of the high explosive NTO: Sublimation, decomposition, and autocatalysis. Journal of Physical Chemistry B , 106:4022–4026.
  • Yan , Q. L. , S. Zeman , T. L. Zhang , and A. Elbeih . 2013 . Non-isothermal decomposition behavior of Fluorel bonded explosives containing attractive cyclic nitramines . Thermochimica Acta , 574 : 10 – 18 .
  • Batten , J. J. 1985 . The agent of the autocatalytic thermal-decomposition of aliphatic nitrate ester explosives . International Journal of Chemical Kinetics , 17 : 1085 – 1090 .
  • Burkina , R. S. and A. G. Knyazeva . 1991 . Effect of autocatalysis on the critical conditions of focal thermal ignition . Combustion, Explosion and Shock Waves , 27 : 143 – 148 .
  • Miller , J. A. and C. T. Bowman . 1989 . Mechanism and modeling of nitrogen chemistry in combustion . Progress in Energy and Combustion Science , 15 : 287 – 338 .
  • Barrie , P. J. 2012 . The mathematical origins of the kinetic compensation effect: 1. The effect of random experimental errors . Physical Chemistry Chemical Physics , 14 : 318 – 326 .
  • Barrie , P. J. 2012 . The mathematical origins of the kinetic compensation effect: 2. The effect of systematic errors . Physical Chemistry Chemical Physics , 14 : 327 – 336 .
  • Poco , J. G. R. , H. Furlan , and R. Giudici . 2002 . A discussion on kinetic compensation effect and anisotropy . Journal of Physical Chemistry B , 106 : 4873 – 4877 .
  • Galwey , A. K. and M. Mortimer . 2006 . Compensation effects and compensation defects in kinetic and mechanistic interpretations of heterogeneous chemical reactions . International Journal of Chemical Kinetics , 38 : 464 – 473 .
  • Zeman , S. 1981 . Kinetic data from low-temperature thermolysis in the study of the microscopic initiation mechanism of the detonation of organic polynitro compounds . Thermochimica Acta , 49 : 219 – 246 .
  • Liu , R. , W. Yu , T. Zhang , L. Yang , and Z. Zhou . 2013 . Nanoscale effect on thermal decomposition kinetics of organic particles: Dynamic vacuum stability test of 1,3,5-triamino-2,4,6-trinitrobenzene . Physical Chemistry Chemical Physics , 15 : 7889 – 7895 .
  • Wang , G.-X. , C.-H. Shi , X.-D. Gong , and H.-M. Xiao . 2009 . Theoretical investigation on structures, densities, detonation properties, and the pyrolysis mechanism of the derivatives of HNS . Journal of Physical Chemistry A , 113 : 1318 – 1326 .
  • Stephen , A. D. , P. Srinivasan , and P. Kumaradhas . 2011 . Bond charge depletion, bond strength and the impact sensitivity of high energetic 1,3,5-triamino 2,4,6-trinitrobenzene (TATB) molecule: A theoretical charge density analysis . Computational and Theoretical Chemistry , 967 : 250 – 256 .
  • Lee , J. S. , C. K. Hsu , and C. L. Chang . 2002 . A study on the thermal decomposition behaviors of PETN, RDX, HNS and HMX . Thermochimica Acta , 392 : 173 – 176 .
  • Boddu , V. M. , D. S. Viswanath , T. K. Ghosh , and R. Damavarapu . 2010 . 2,4,6-Triamino-1,3,5-trinitrobenzene (TATB) and TATB-based formulations—A review . Journal of Hazardous Materials , 181 : 1 – 8 .
  • Anglin , T. C. , M. P. Cooper , H. Li , K. Chandler , and J. C. Conboy . 2010 . Free energy and entropy of activation for phospholipid flip-flop in planar supported lipid bilayers . Journal of Physical Chemistry B , 114 : 1903 – 1914 .
  • Hosamani , M. T. , N. H. Ayachit , and D. K. Deshpande . 2012 . Activation energy (delta G*), enthalpy (delta H*), and entropy (delta S*) of some indoles and certain of their binary mixtures . Journal of Thermal Analysis and Calorimetry , 107 : 1301 – 1306 .
  • Petek , A. and M. Krajnc . 2012 . The enthalpy and entropy of activation for ethyl acetate saponification . International Journal of Chemical Kinetics , 44 : 692 – 698 .
  • Houston , P. L. 2001 . Chemical Kinetics and Reaction Dynamics . New York : McGraw Hill Companies. Inc.
  • Wang , G. , C. Shi , X. Gong , and H. Xiao . 2009 . A theoretical study on the vibrational spectra and thermodynamic properties for the derivatives of HNS . Chinese Journal of Chemistry , 27 : 687 – 696 .
  • Wang , G. X. , X. D. Gong , Y. Liu , and H. M. Xiao . 2009 . A theoretical study on the vibrational spectra and thermodynamic properties for the nitro derivatives of phenols . Spectrochimica Acta Part A – Molecular and Biomolecular Spectroscopy , 74 : 569 – 574 .
  • Wang , G. X. , X. D. Gong , and H. M. Xiao . 2008 . Theoretical study on the vibrational spectra and thermodynamic properties for nitro derivatives of benzene and anilines . Chinese Journal of Chemistry , 26 : 1357 – 1362 .
  • Varga , R. and S. Zeman . 2006 . Decomposition of some polynitro arenes initiated by heat and shock—Part I. 2.4,6-Trinitrotoluene . Journal of Hazardous Materials , 132 : 165 – 170 .
  • Varga , R. , S. Zeman , and M. Kouba . 2006 . Decomposition of some polynitro arenes initiated by heat and shock—Part II: Several N-(2,4,6-trinitrophenyl)-substituted amino derivatives . Journal of Hazardous Materials , 137 : 1345 – 1351 .
  • Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/uegm.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.