530
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

A Numerical Method for the Determination of the Virtual Origin Point of Shaped Charge Jets Instead of Using Flash X-ray Radiography

, &

References

  • Abrahamson, G. R., and J. N. Goodier. 1963. Penetration by shaped charge jets of non-uniform velocity. Journal of Applied Physics 34:195–99. doi:10.1063/1.1729065.
  • Allison, F. E., and G. M. Bryan. 1957. Cratering by a train of hypervelocity fragments. Proceeding of 2nd Hypervelocity Impact Effects Symposium 1:81.
  • Allison, F. E., and R. Vitali 1963. A new method of computing penetration variables for shaped charge jets. Report No 1184, Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland.
  • ASTM. 2006. Standard practice for making and curing concrete test specimens in the laboratory. http://www.astm.org/FULL_TEXT/C192/HTML/C192.htm ( accessed May 19, 2016).
  • Autodyn Team. 1997. Autodyn theory manual, Revision, 3rd. San Ramon, CA: Century Dynamics.
  • Baudin, G., and R. Serradeill. 2010. Review of Jones-Wilkins-Lee equation of state, New Models and Hydrocodes for Shock Wave Processes in Condensed Matter, FIAP Jean Monnet Paris, France, Edited by Laurent Soulard. EPJ Web of Conferences, vol. 10, 21.
  • Berg, V., and D. Preece 2004. Shaped charge induced concrete damage predictions using RHT constitutive modeling. Proceedings of 30th Annual Conference on Explosives and Blasting Technique, New Orleans, LA, 261–72.
  • Birkhoff, G., D. P. MacDougall, E. M. Pugh, and S. G. Taylor. 1948. Explosives with lined cavities. Journal of Applied Physics 19:563–82. doi:10.1063/1.1698173.
  • DiPersio, R., W. Jones, A. Merendino, and J. Simon 1967. Characteristics of jet from small caliber shaped charges with copper and aluminium liners. Report No 1866, Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland.
  • DiPersio, R., J. Simon, and A. Merendino 1965. Penetration of shaped-charge jets into metallic targets. Report No 1296, Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland.
  • Elbeih, A. 2015. Characteristics of a new plastic explosive named EPX-1. Journal of Chemistry 2015:1–6. doi:10.1155/2015/861756.
  • Elbeih, A., J. Pachman, S. Zeman, W. A. Trzcinski, and M. Suceska. 2013. Study of plastic explosives based on attractive cyclic nitramines, Part II: Detonation characteristics of explosives with polyfluorinated binders. Propellants, Explosives, Pyrotechnics 38:238–43. doi:10.1002/prep.201100073.
  • Elbeih, A., and S. Zeman. 2014. Characteristics of melt cast compositions based on cis-1,3,4,6-tetranitrooctahydroimidazo-[4,5 d]imidazole (BCHMX)/TNT. Center European Journal Energy Materials 11:487–99.
  • Elbeih, A., S. Zeman, M. Jungova, and Z. Akstein. 2012a. Effect of different polymeric matrices on the sensitivity and performance of interesting cyclic nitramines. Center European Journal Energy Materials 9:131–38.
  • Elbeih, A., S. Zeman, M. Jungova, P. Vavra, and Z. Akstein. 2012b. Effect of different polymeric matrices on some properties of plastic bonded explosives. Propellants, Explosives, Pyrotechnics 37:676–84. doi:10.1002/prep.201200018.
  • Elbeih, A., S. Zeman, and J. Pachman. 2013. Effect of polar plasticizers on the characteristics of selected cyclic nitramines. Center European Journal Energy Materials 10 (3):339.
  • Elbeih, A., S. Zeman, J. Pachman, P. Vavra, W. Trzcinski, and Z. Akstein. 2012c. Detonation characteristics of attractive cyclic nitramines bonded by plastic matrices based on polyisobutylene and poly(methyl methacrylate) binders. Journal Energy Materials 30:358–71. doi:10.1080/07370652.2011.585216.
  • Elek, P. M., V. V. Džingalašević, S. S. Jaramaz, and D. M. Micković. 2015. Determination of detonation products equation of state from cylinder test. Analytical Model and Numerical Analysis, Thermal Science 19:35–48.
  • Elshenawy, T., A. Elbeih, and Q. Li. 2016. A modified penetration model for copper-tungsten shaped charge jets with non-uniform density distribution. Center European Journal Energy Materials 13 (4):927–43. doi:10.22211/cejem/65141.
  • Elshenawy, T., and Q. Li. 2013. Influences of target strength and confinement on the penetration depth of an oil well perforator. International Journal of Impact Engineering 54:130–37. doi:10.1016/j.ijimpeng.2012.10.010.
  • Hayhurst, C. J., R. A. Clegg, I. H. Livingstone, and N. J. Francis 1996. The application of SPH techniques in Autodyn 2-D to ballistic impact problems. Proceedings of 16th International Symposium on Ballistics, San Francisco, CA.
  • Held, M. 1988. Penetration cutoff velocities of shaped charge jets. Propellants, Explosives, Pyrotechnics 13:111–19. doi:10.1002/prep.19880130405.
  • Herrmann, W. 1969. Constitutive equation for the dynamic compaction of ductile porous materials. Journal of Applied Physics 40:2490–99. doi:10.1063/1.1658021.
  • Hirsch, E. 1979. A formula for the shaped charge Jet breakup-time. Propellants, Explosives, Pyrotechnics 4:89–94. doi:10.1002/prep.19790040502.
  • Hirsch, E. 2013. Scaling of the shaped charge jet break up time. Propellants, Explosives, Pyrotechnics 31:230–33. doi:10.1002/prep.200600031.
  • Kato, H., N. Kaga, M. Takizuka, H. Hamashima, and S. Itoh. 2004. Research on the JWL parameters of several kinds of explosives. Materials Science Forum 465:271–76. doi:10.4028/www.scientific.net/MSF.465-466.271.
  • Lan, I., S. C. Hung, C. Y. Chen, Y. M. Niu, and J. H. Shiuan. 1993. An improved simple method of deducing JWL parameters from cylinder expansion test. Propellants, Explosives, Pyrotechnics 18:18–24. doi:10.1002/prep.19930180104.
  • Lee, E., H. Hornig, and J. Kury. 1968. Adiabatic expansion of high explosive detonation products, California Univ., Livermore. Lawrence Radiation Laboratory. Livermore, CA. UCRL-50422.
  • Leppänen, J. 2004. Concrete structures subjected to fragment impacts. PhD thesis, Chalmers University of Technology, Göteborg, Sweden.
  • Leppänen, J. 2006. Concrete subjected to projectile and fragment impacts: Modelling of crack softening and strain rate dependency in tension. International Journal of Impact Engineering 32:1828–41. doi:10.1016/j.ijimpeng.2005.06.005.
  • Li, Q., and H. Meng. 2003. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test. International Journal Solids and Structures 40:343–60. doi:10.1016/S0020-7683(02)00526-7.
  • Pack, D. C., and W. M. Evans. 1951. Penetration by high-velocity (Munroe) Jets: I. Proceedings of the Physical Society. Section B 64:298. doi:10.1088/0370-1301/64/4/302.
  • Pugh, E. M., R. J. Eichelberger, and N. Rostoker. 1952. Theory of jet formation by charges with lined conical cavities. Journal of Applied Physics 23:532–36. doi:10.1063/1.1702246.
  • Riedel, K., K. Thoma, S. Hiermaier, and E. Schmolinske 1999. Penetration of reinforced concrete by BETA-B-500. numerical analysis using a new macroscopic concrete model for hydrocodes. Proceedings of 9th International Symposium on the Interaction of the Effects of Munitions with Structures, Berlin-Strausberg, Germany.
  • Robinson, A. 1985. SCAP-A shaped charge analysis program: User’s manual for SCAP 1. Albuquerque, NM: Sandia National Labs.
  • Tarver, C. M., W. C. Tao, and C. G. Lee. 1996. Sideways plate push test for detonating solid explosives. Propellants, Explosives, Pyrotechnics 21:238–46. doi:10.1002/prep.19960210506.
  • Tu, Z., and Y. Lu. 2009. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations. International Journal of Impact Engineering 36:132–46. doi:10.1016/j.ijimpeng.2007.12.010.
  • Walters, W. P., W. J. Flis, and P. C. Chou. 1988. A survey of shaped-charge jet penetration models. International Journal of Impact Engineering 7:307–25. doi:10.1016/0734-743X(88)90032-2.
  • Yan, Q.-L., S. Zeman, A. Elbeih, and Z. Akstein. 2013. The influence of the semtex matrix on the thermal behavior and decomposition kinetics of cyclic nitramines. Center European Journal Energy Materials 10:509–28.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.