248
Views
11
CrossRef citations to date
0
Altmetric
Articles

Compatibility and thermokinetics studies of octahydro- 1,3,5,7-tetranitro-1,3,5,7-tetrazocine with polyether-based polyurethane containing different curatives

, , &

References

  • Abd-Elghany, M., T. M. Klapotke, A. Elbeih, S. Hassanein., and T.Elshenawy. 2017. Study of Thermal Reactivity and Kinetics of HMXand Its PBX by different methods. Huozhayao Xuebao/Chinese Journal of Explosives and Propellants 40: 24–32. doi:10.14077/j.issn.1007-7812.2017.02.004.
  • Akahira, T., and T. Sunose. 1971. Method of determining activation deterioration constant of electrical insulating materials. Research Report Chiba Institute of Technology 16, 22–23.
  • Allan, D., J. Daly, and J. J. Liggat. 2013. Thermal volatilisation analysis of TDI-based flexible polyurethane foam. Polymer Degradation Stability 98:535–41. doi:10.1016/j.polymdegradstab.2012.12.002.
  • Beach, N. E., and V. K. Canfield. 1971. Compatibility of explosive with polymers (= 3\* ROMAN III). Plastic Report 40:73–76.
  • Burnham, A. K., and R. K. Weese. 2005. Kinetics of thermal degradation of explosive binders Viton A, Estane and Kel-F. Thermochimica Acta 426:85–92. doi:10.1016/j.tca.2004.07.00986.
  • Chakraborty, D., R. P. Muller, S. Dasgupta, and W. A. Goddard. 2001. Mechanism for unimolecular decomposition of HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocine), an Ab initio study. Journal of Physical Chemistry A 105:1302–14. doi:10.1021/jp0026181.
  • El-Basuony, S.A., M. A. Sadek, T. Z. Wafyand, H. E. Maostafa. 2018. Thermokinetic studies of polyurethanesbased on hydroxyl-terminated polybutadiene prepolymer. Journal of Thermal Analysis and Calorimetry 131(2): 2013–19. doi:10.1007/s10973-017-6552-5
  • Fathollahi, M., S. M. Pourmortazavi, and S. G. Hosseini. 2008. Particle size effects on thermal decomposition of energetic material. Journal of Energetic Materials 26:52–69. doi:10.1080/07370650701719295.
  • Felix, S. P., G. Singh, A. K. Sikder, and J. P. Agrawal. 2005. Studies on energetic compounds-part 33: Thermolysis of keto-RDX and its plastic bonded explosives containing thermally stable polymers. Thermochimica Acta 426:53–60. doi:10.1016/S0040-6031(02)00460-4.
  • Gao, H., Q. Wang, X. Ke, J. Liu, G. Hao, L. Xiao, T. Chen, W. Jiang, and Q. Liu. 2017. Preparation and characterization of an ultrafine HMX/NQ co-crystal by vacuum freeze drying method. RSC Advances 7:46229–35. doi:10.1039/c7ra06646e.
  • Huang, H., Y. Shi, J. Yang, and B. Li. 2015. Compatibility study of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50) with some energetic materials and inert materials. Journal of Energetic Material 33 (1):66–72. doi:10.1080/07370652.2014.889781.
  • Huang, H., Y. Shi, Y. Yu, and J. Yang. 2018. Thermal behaviour and compatibility study of dihydroxylammonium 3,4-dinitraminofurazan. Journal of Energetic Materials 36:247–52. doi:10.1080/07370652.2017.1388884.
  • Jin, B., J. Shen, X. Gou, R. Peng, S. Chu, and H. Dong. 2016. Synthesis, characterization, thermal stability and sensitivity properties of new energetic polymers-PVTNP-g-GAPs crosslinked polymers. Polymers 8(1): 1–10. doi: 10.3390/polym8010010.
  • Kissinger, H. E. 1956. Variation of peak temperature with heating rate in differential thermal analysis. Journal of Research of the National Bureau of Standards 57:2712. doi:10.6028/jres.057.026.
  • Kissinger, H. E. 1957. Reaction kinetics in differential thermal analysis. Analytical Chemistry 29:1702–06. doi:10.1021/ac60131a045.
  • Klerk, W. A., M. C. Schrader, and A. V. Steen. 1999. Compatibility testing of energetic materials, which technique? Journal of Thermal Analysis and Calorimetry 56:1123–31. doi:10.1023/A:1010152911477.
  • Li, X., B. L. Wang, and Q. H. Lin. 2016. Compatibility study of 2,6-diamino-3,5-dinitropyridine-1-oxide with some energetic materials. Central European Journal of Energetic Materials 13:978–88. doi:10.22211/cejem/67312.
  • Li, X., Q. Lin, X.-Y. Zhao, Z.-W. Han, and B. Wang. 2017. Compatibility of 2, 4, 6, 8, 10,12-hexanitrohexaazaisowurtzitane with a selection of insensitive explosives. Journal of Energetic Material 35 (2):188–96. doi:10.1080/07370652.2016.1245372.
  • Malotky, L., and H. Heller. 1978. Explosive compatible polymers for defense application. Journal of Hazardous Materials 2 (2):189–95. doi:10.1016/0304-3894(77)80019-8.
  • Mathew, S., S. K. Manu, and T. L. Varghese. 2008 .Thermomechanical and morphological characteristics of cross#linked GAP and GAP–HTPB networks with different diisocyanates. Explosives, Propellants Pyrotechnics 33(2):146–152. do: 10.1002/prep.200800213.
  • Matuschek, G. 1995. Thermal degradation of different fire retardant polyurethane foams. Thermochimica Acta 263:59–71. doi:10.1016/0040-6031(94)02386-3.
  • Mazzeu, M. A. C., E. C. Mattos, and K. Iha. 2010. Studies on compatibility of energetic materials by thermal methods. Journal of Aerospace Technology and Management 2 (1):53–58. doi:10.5028/jatm.2010.02015358.
  • Myburgh, A. 2006. Standardization on STANAG test methods for ease of compatibility and thermal studies. Journal of Thermal Analysis and Calorimetry 85 (1):135–39. doi:10.1007/s10973-005-7357-5.
  • Pang, W. Q., X. Z. Fan, Y. N. Xue, H. X. Xu, W. Zhang, X. H. Zhang, Y. H. Li, Y. Li, and X. B. Shi. 2013. Study on the compatibility of tetraethylammonium decahydrodecaborate (BHN) with some energetic components and inert materials. Propellants, Explosives, Pyrotechnics 38 (2):278–85. doi:10.1002/prep.201100109.
  • Pei, J. F., F, Q. Zhao, H. L. Lu, X. D. Song, R. Zhou, Z. F. Yuan, J. Zhang, and J. B. Chen. 2016. Compatibility study of BAMOGAP copolymer with some energetic materials. Journal of Thermal Analysis and Calorimetry 124(3): 1301–1307. doi: 10.1007/s10973-016-5302-4.
  • Rosu, D., N. Tudorachi, and L. Rosu. 2010. Investigations on the thermal stability of a MDI based polyurethane elastomer. Journal of Applied Polymer Science 89:152–58. doi:10.1016/j.jaap.2010.07.004.
  • Santhosh, G., and H. G. Ang. 2010. Compatibility of ammonium dinitramide with polymeric binders studied by thermoanalytical methods. International Journal of Energetic Materials and Chemical Propulsion 9:27–41. doi:10.1615/IntJEnergeticMaterialsChemProp.v9.i1.20.
  • Singh, A., P. K. Soni, C. Sarkar, and N. Mukherjee. 2018. Thermal reactivity of aluminized polymer bonded explosives based on non-isothermal thermogravimetry and calorimetry measurements. Journal of Thermal Analyis and Calorimetry. doi:10.1007/s10973-018-7730-9.
  • Singh, A., T. C. Sharma, J. K. Narang, and P. Kishore. 2017b. Thermal decomposition and kinetics of plastic bonded explosives based on mixture of HMX and TATB with polymer matrices. Defence Technology 13:22–32. doi:10.1016/j.dt.2016.11.005.
  • Singh, A., T. C. Sharma, and P. Kishore. 2017a. Thermal degradation kinetics and reaction models of 1,3,5-triamino-2,4,6-trinitrobenzene-based plastic-bonded explosives containing fluoropolymer matrices. Journal of Thermal Analysis and Calorimetry 129 (3):1404–14. doi:10.1007/s10973-017-6335-z.
  • STANAG, 4147 (Ed. 2). 2001. Chemical compatibility of ammunition components with explosives (non-nuclear applications).
  • Stankovic, M., M. Dimic, M. Blagojevic, S. Petrovic, and D. Mijin. 2003. Compatibility examination of explosive and polymer materials by thermal methods. Scientific-Technical Review 3 (1):1–10.
  • Vyazovkina, S., A. K. Burnham, J. M. Criado, L. A. Perez-Maqueda, C. Popescu, and N. Sbirrazzuoli. 2011. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta 520:1–19. doi:10.1016/j.tca.2011.03.034.
  • Yan, Q. L., S. Zeman, and A. Elbeih. 2013. Thermal behaviour and decomposition kinetics of Viton A bonded explosives containing attractivecyclic nitramines. Thermochimica Acta 562 (20):56–64. doi:10.1016/j.tca.2013.03.041.
  • Yan, Q. L., S. Zeman, J. Selesovsky, R. Svoboda, and A. Elbeil. 2013a. Thermal behavior and decomposition kinetics of Formex-bonded explosives containing different cyclic nitramines. Journal of Thermal Analysis and Calorimetry 11:1419–30. doi:10.1007/s10973-012-2492-2.
  • Yan, Q. L., X. J. Li, L. Y. Zhang, J. Z. Li, H. L. Li, and Z. R. Liu. 2008. Compatibility study of trans-1,4,5,8-tetranitro-1,4,5,8-tetraazadecalin (TNAD) with some energetic components and inert materials. Journal of Hazardous Materials 160:529–34. doi:10.1016/j.jhazmat.2008.03.027.
  • Zeman, S., A. Elbeih, and Q. L. Yan. 2013. Notes on the use of the vacuum stability test in the study of initiation reactivity of attractive cyclic nitramines in the C4 matrix. Journal of Thermal Analysis and Calorimetry 112 (3):1433–37. doi:10.1007/s10973-012-2710-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.