426
Views
16
CrossRef citations to date
0
Altmetric
Articles

Facile preparation of Cr2O3 nanoparticles and their use as an active catalyst on the thermal decomposition of ammonium perchlorate

ORCID Icon, , , , , , , ORCID Icon, & show all

References

  • Bai, H. R., S. H. Li, Y. H. Zhao, Z. J. Xu, R. Q. Chu, J. G. Hao, C. Chen, H. Y. Li, Y. Y. Gong, and G. R. Li. 2016. Influence of Cr2O3 on highly nonlinear properties and low leakage current of ZnO–Bi2O3 varistor ceramics. Ceramics International 42 (9):10547–50. doi:10.1016/j.ceramint.2016.03.042.
  • Blaine, R. L., and H. E. Kissinger. 2012. Homer Kissinger and the Kissinger equation. Thermochimica Acta 540:1–6. doi:10.1016/j.tca.2012.04.008.
  • Boldyrev, V. V. 2006. Thermal decomposition of ammonium perchlorate. Thermochimica Acta 443 (1):1–36. doi:10.1016/j.tca.2005.11.038.
  • Burcat, A., B. Carmon, I. Pelly, and M. Steinberg. 1968. A study on the mechanism of the thermal decomposition of ammonium perchlorate. Israel Journal of Chemistry 6 (6):859–64. doi:10.1002/ijch.v6.6.
  • Chandru, R. A., S. Patra, C. Oommen, N. Munichandraiah, and B. N. Raghunandan. 2012. Exceptional activity of mesoporous β-MnO2 in the catalytic thermal sensitization of ammonium perchlorate. Journal of Materials Chemistry 22 (14):6536–38. doi:10.1039/c2jm16169a.
  • Chen, L. F., Z. Song, X. Wang, S. V. Prikhodko, J. C. Hu, S. Kodambaka, and R. Richards. 2009. Three-dimensional morphology control during wet chemical synthesis of porous chromium oxide spheres. ACS Applied Materials & Interfaces 1 (9):1931–37. doi:10.1021/am900334q.
  • Costa, C. H., F. Perreault, A. Oukarroum, S. P. Melegari, R. Popovic, and W. G. Matias. 2016. Effect of chromium oxide (III) nanoparticles on the production of reactive oxygen species and photosystem II activity in the green alga Chlamydomonas reinhardtii. Science of the Total Environment 565:951–60. doi:10.1016/j.scitotenv.2016.01.028.
  • Dey, A., V. Nangare, P. V. More, M. A. Shafeeuulla Khan, P. K. Khanna, A. K. Sikder, and S. Chattopadhyay. 2015. A graphene titanium dioxide nanocomposite(GTNC): One pot green synthesis and its application in a solid rocket propellant. RSC Advances 5 (78):63777–85. doi:10.1039/C5RA09295G.
  • Dhupe, A. P., A. N. Gokarn, and L. K. Doraiswamy. 1991. Investigations into the compensation effect in catalytic gasification of active charcoal by carbon dioxide. Fuel 70:839–44. doi:10.1016/0016-2361(91)90192-D.
  • Eslami, A., S. G. Hosseini, and M. Bazrgary. 2012. Improvement of thermal decomposition properties of ammonium perchlorate particles using some polymer coating agents. Journal of Thermal Analysis and Calorimetry 113 (2):721–30. doi:10.1007/s10973-012-2784-6.
  • Eslami, A., N. M. Juibari, and S. G. Hosseini. 2016. Fabrication of ammonium perchlorate/copper-chromium oxides core-shell nanocomposites for catalytic thermal decomposition of ammonium perchlorate. Materials Chemistry and Physics 181:12–20. doi:10.1016/j.matchemphys.2016.05.064.
  • Fan, R. H., H. L. Lü, K. N. Sun, W. X. Wang, and X. B. Yi. 2006. Kinetics of thermite reaction in Al-Fe2O3 system. Thermochimica Acta 440 (2):129–31. doi:10.1016/j.tca.2005.10.020.
  • Gao, Y. X., C. M. Zhu, L. G. Wang, Q. Guo, Z. M. Tian, and S. L. Yuan. 2016. Exchange bias effect in CuCr2O4/Cr2O3 nanogranular systems. Journal of Alloys & Compounds 673:126–30. doi:10.1016/j.jallcom.2016.02.250.
  • Hao, G. Z., J. Liu, H. Gao, L. Xiao, X. Ke, W. Jiang, F. Q. Zhao, and H. X. Gao. 2015. Preparation of nano-sized copper β-resorcylate (β-Cu) and its excellent catalytic activity for the thermal decomposition of ammonium perchlorate. Propellants, Explosives, Pyrotechnics 40 (6):848–53. doi:10.1002/prep.201500006.
  • Hosseini, S. G., and R. Abazari. 2015. A facile one-step route for production of CuO, NiO, and CuO-NiO nanoparticles and comparison of their catalytic activity for ammonium perchlorate decomposition. RSC Advances 5 (117):96777–84. doi:10.1039/C5RA20155A.
  • Hosseini, S. G., R. Abazari, and A. Gavi. 2014. Pure CuCr2O4 nanoparticles: Synthesis, characterization and their morphological and size effects on the catalytic thermal decomposition of ammonium perchlorate. Solid State Sciences 37:72–79. doi:10.1016/j.solidstatesciences.2014.08.014.
  • Hosseini, S. G., M. A. Alavi, A. Ghavi, S. J. H. Toloti, and F. Agend. 2015. Modeling of burning rate equation of ammonium perchlorate particles over Cu-Cr-O nanocomposites: Application of hybrid DOE/ANN methodologies. Journal of Thermal Analysis and Calorimetry 119 (1):99–109. doi:10.1007/s10973-014-4157-9.
  • Jeon, S., T. Thajudeen, and C. J. Hogan. 2015. Evaluation of nanoparticle aggregate morphology during wet milling. Powder Technology 272:75–84. doi:10.1016/j.powtec.2014.11.039.
  • Jia, Z. G., D. P. Ren, Q. Z. Wang, and R. S. Zhu. 2013. A new precursor strategy to prepare ZnCo2O4 nanorods and their excellent catalytic activity for thermal decomposition of ammonium perchlorate. Applied Surface Science 270:312–18. doi:10.1016/j.apsusc.2013.01.022.
  • Jung, J. Y., J. K. Kim, H. M. Shim, H. S. Kim, and K. K. Koo. 2015. Preparation of Cr2O3/AP composites and their thermal decomposition characteristics. Applied Chemistry for Engineering 26 (2):145–53. doi:10.14478/ace.2014.1129.
  • Kohga, M., and S. Handa. 2017. Preparation of combined ammonium perchlorate/ammonium nitrate samples by freeze drying. Journal of Energetic Materials 35 (3):276–91. doi:10.1080/07370652.2016.1178826.
  • Kohga, M., and S. Handa. 2018. Thermal decomposition behaviors and burning characteristics of composite propellants prepared using combined ammonium perchlorate/ammonium nitrate particles. Journal of Energetic Material 36 (1):93–110. doi:10.1080/07370652.2017.1316794.
  • Li, F. S., W. Jiang, J. Liu, X. D. Guo, Y. J. Wang, and G. Z. Hao. 2016. Energetic nanomaterials: Chapter five - Applications of nanocatalysts in solid rocket propellants. Amsterdam: Elsevier.
  • Li, P., Z. Zhou, H. B. Xu, and Y. Zhang. 2012. A novel hydrolysis method to synthesize chromium hydroxide nanoparticles and its catalytic effect in the thermal decomposition of ammonium perchlorate. Thermochimica Acta 544:71–76. doi:10.1016/j.tca.2012.06.021.
  • Lu, S. S., X. Y. Jing, J. Y. Liu, J. Wang, Q. Liu, Y. H. Zhao, S. B. Jamil, M. L. Zhang, and L. H. Liu. 2013. Synthesis of porous sheet-like Co3O4 microstructure by precipitation method and its potential applications in the thermal decomposition of ammonium perchlorate. Journal of Solid State Chemistry 197:345–51. doi:10.1016/j.jssc.2012.09.020.
  • Maaza, M., B. D. Ngom, M. Achouri, and K. Manikandan. 2015. Functional nanostructured oxides. Vacuum 114:172–87. doi:10.1016/j.vacuum.2014.12.023.
  • Mallick, L., S. Kumar, and A. Chowdhury. 2015. Thermal decomposition of ammonium perchlorate—A TGA–FTIR–MS study: Part I. Thermochimica Acta 610:57–68. doi:10.1016/j.tca.2015.04.025.
  • Mallick, L., S. Kumar, and A. Chowdhury. 2017. Thermal decomposition of ammonium perchlorate—A TGA–FTIR–MS study: Part II. Thermochimica Acta 653:83–96. doi:10.1016/j.tca.2017.04.004.
  • Patil, P. R., V. N. Krishnamurthy, and S. S. Joshi. 2008. Effect of nano-copper oxide and copper chromite on the thermal decomposition of ammonium perchlorate. Propellants, Explosives, Pyrotechnics 33 (4):266–70. doi:10.1002/prep.v33:4.
  • Reid, D. L., K. R. Kreitz, M. A. Stephens, J. E. S. King, P. Nachimuthu, E. L. Petersen, and S. Seal. 2011. Development of highly active titania-based nanoparticles for energetic materials. Journal of Physical Chemistry C 115 (21):10412–18. doi:10.1021/jp200993s.
  • Rincón-Mora, B., M. M. Jordan, and J. M. Rincón. 2016. Chromium oxide additions in lithium disilicate glass crystallization. Materials Letters 179:138–41. doi:10.1016/j.matlet.2016.05.061.
  • Sanoop, A. P., R. Rajeev, and B. K. George. 2015. Synthesis and characterization of a novel copper chromite catalyst for the thermal decomposition of ammonium perchlorate. Thermochimica Acta 606:34–40. doi:10.1016/j.tca.2015.03.006.
  • Singh, G., S. K. Sengupta, I. P. S. Kapoor, S. Dubey, R. Dubey, and S. Singh. 2013. Nanoparticles of transition metals as accelerants in the thermal decomposition of ammonium perchlorate, Part 62. Journal of Energetic Materials 31 (3):165–77. doi:10.1080/07370652.2012.656181.
  • Singh, S., M. Chawla, P. F. Siril, and G. Singh. 2014. Manganese oxalate nanorods as ballistic modifier for composite solid propellants. Thermochimica Acta 597:85–92. doi:10.1016/j.tca.2014.10.016.
  • Singh, S., P. Srivastava, and G. Singh. 2013. Nanorods, nanospheres, nanocubes: Synthesis, characterization and catalytic activity of nanoferrites of Mn, Co, Ni, Part-89. Materials Research Bulletin 48 (2):739–46. doi:10.1016/j.materresbull.2012.11.015.
  • Srivastava, P., I. P. S. Kapoor, and G. Singh. 2009. Nanoferrites: Preparation, characterization and catalytic activity. Journal of Alloys and Compounds 485 (1–2):88–92. doi:10.1016/j.jallcom.2009.05.118.
  • Starink, M. J. 2003. The determination of activation energy from linear heating rate experiments: A comparison of the accuracy of isoconversion methods. Thermochimica Acta 404 (1–2):163–76. doi:10.1016/S0040-6031(03)00144-8.
  • Tian, S. Q., N. Li, D. W. Zeng, H. T. Li, G. Tang, A. M. Pang, C. S. Xie, and X. J. Zhao. 2015. Hierarchical ZnO hollow microspheres with exposed (001) facets as promising catalysts for the thermal decomposition of ammonium perchlorate. CrystEngComm 17 (45):8689–96. doi:10.1039/C5CE01160D.
  • Vargeese, A. A., and K. Muralidharan. 2011. Anatase–Brookite mixed phase nano TiO2 catalyzed homolytic decomposition of ammonium nitrate. Journal of Hazardous Materials 192 (3):1314–20.
  • Vargeese, A. A., and K. Muralidharan. 2013. Effect of anatase-brookite mixed phase titanium dioxide nanoparticles on the high temperature decomposition kinetics of ammonium perchlorate. Materials Chemistry and Physics 139 (2–3):537–42. doi:10.1016/j.matchemphys.2013.01.054.
  • Viswanath, J. V., P. Vijayadarshan, T. Mohan, N. V. S. Rao, A. Gupta, and A. Venkataraman. 2018. Copper chromite as ballistic modifier in a typical solid rocket propellant composition: A novel synthetic route involved. Journal of Energetic Materials 36 (1):69–81. doi:10.1080/07370652.2017.1313911.
  • Wang, B. G., Y. F. Chen, J. L. Zhang, and M. Gao. 2013. Preparation, characterization and performances of ultrafine CL-20/Cr2O3 composite energetic materials. Initiators & Pyrotechnics 3:26–29.
  • Wang, J. X., W. C. Zhang, Z. L. Zheng, Y. Gao, K. F. Ma, J. H. Ye, and Y. Yang. 2017. Enhanced thermal decomposition properties of ammonium perchlorate through addition of 3DOM core-shell Fe2O3/Co3O4 composite. Journal of Alloys and Compounds 724 (SupplementC):720–27. doi:10.1016/j.jallcom.2017.07.033.
  • Yang, Q., S. P. Chen, G. Xie, and S. L. Gao. 2014. Synthesis and characterization of an energetic compound Cu(Mtta)2(NO3)2 and effect on thermal decomposition of ammonium perchlorate. Journal of Hazardous Materials 197:199–203. doi:10.1016/j.jhazmat.2011.09.074.
  • Zhang, W. J., P. Li, H. B. Xu, R. D. Sun, P. H. Qing, and Y. Zhang. 2014. Thermal decomposition of ammonium perchlorate in the presence of Al(OH)3·Cr(OH)3 nanoparticles. Journal of Hazardous Materials 268:273–80. doi:10.1016/j.jhazmat.2014.01.016.
  • Zhang, Y. F., and C. G. Meng. 2016. Facile fabrication of Fe3O4 and Co3O4 microspheres and their influence on the thermal decomposition of ammonium perchlorate. Journal of Alloys and Compounds 674 (SupplementC):259–65. doi:10.1016/j.jallcom.2016.03.071.
  • Zhu, Y. L., H. Huang, H. Ren, and Q. J. Jiao. 2014. Kinetics of Thermal Decomposition of Ammonium Perchlorate by TG/DSC-MS-FTIR. Journal of Energetic Materials 32 (1):16–26. doi:10.1080/07370652.2012.725453.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.