275
Views
1
CrossRef citations to date
0
Altmetric
Articles

Thermal decomposition of ammonium perchlorate/exfoliated-graphene and the relationship between activation energy and band gap

ORCID Icon

References

  • Alam, S. N., N. Sharma, and L. Kumar. 2017. Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtained reduced graphene oxide (rGO). Graphene 6:1–18. doi:10.4236/graphene.2017.61001.
  • Alizadeh-Gheshlaghi, E., B. Shaabani, A. Khodayari, Y. Azizian-Kalandaragh, and R. Rahimi. 2012. Investigation of the catalytic activity of nano-sized CuO, Co3O4 and CuCo2O4 powders on thermal decomposition of ammonium perchlorate. Powder Technology 217:330–339. doi:10.1016/j.powtec.2011.10.045.
  • Avouris, P., and C. Dimitrakopoulos. 2012. Graphene: Synthesis and applications. Materials Today 15 ([3]):86–96. doi:10.1016/S1369-7021(12)70044-5.
  • Ayoman, E., and S. G. Hosseini. 2016. Synthesis of CuO nanopowders by high-energy ball-milling method and investigation of their catalytic activity on thermal decomposition of ammonium perchlorate particles. Journal of Thermal Analysis and Calorimetry 123:1213–24. doi:10.1007/s10973-015-5059-1.
  • Bircomshaw, L., and B. Newman. 1955. Thermal decomposition of ammonium perchlorate. Proceedings of the Royal Society A227:228–37.
  • Boldyrev, V. V. 2006. Thermal decomposition of ammonium perchlorate. Thermochimica Acta 443 ([1]):1–36. doi:10.1016/j.tca.2005.11.038.
  • Boldyrev, V. V., V. V. Aleksandrov, A. V. Boldyreva, V. I. Gritsan, Y. Y. Karpenko, P. P. Korobenichev, V. Panifilov, and F. Khanetidenov. 1970. Mechanism of the thermo decomposition of ammonium perchlorate, Combustion and. Flame 15 ([1]):71–77. doi:10.1016/S0010-2180(70)80066-9.
  • Chaturvedi, S., and P. N. Dave. 2013. A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate. Journal of Saudi Chemical Society 17:135–49. doi:10.1016/j.jscs.2011.05.009.
  • Davenas, A. 1993. Solid Rocket Propulsion Technology. Oxford: Pergamon Press.
  • Dedgaonkar, V. G., and D. B. Sarwade. 1990. Effects of different additives on the thermal decomposition of ammonium perchlorate. Journal of Thermal Analysis and Calorimetry 36 ([1]):223–29. doi:10.1007/BF01912084.
  • Dey, A., J. Athar, P. Varma, H. Prasant, A. K. Sikder, and S. Chattopadhyay. 2015. Graphene-iron oxide nanocomposites: An efficient catalyst for ammonium perchlorate decomposition and burn rate enhancer for AP based composite propellant. RSC Advances 5:1950–60. doi:10.1039/C4RA10812D.
  • Draper, N. R., and H. Smith. 1998. Applied regression analysis. New York: Wiley.
  • Houston, P. L. 2001. Chemical Kinetics and reaction dynamics. New York: Dover Pub.
  • Hunt, A., E. Z. Kurmaev, and A. Moewes. 2014. Band gap engineering of graphene oxide by chemical modification. Carbon 75:366–71. doi:10.1016/j.carbon.2014.04.015.
  • Jacobs, P. W. M., and A. Russell-Jones. 1967. The thermal decomposition and ignition of mixtures of ammonium perchlorate and copper chromite. Symposium International on Combustion 11 ([1]):457–62. doi:10.1016/S0082-0784(67)80170-X.
  • Jacobs, P. W. M., and H. M. White. 1969. Decomposition and combustion of ammonium perchlorate. Chemical Reviews 69 ([4]):551–90. doi:10.1021/cr60260a005.
  • Kannan, M. P. 1987. Thermal decomposition of doped ammonium perchlorate. Journal of Thermal Analysis and Calorimetry 32 ([4]):1219–27. doi:10.1007/BF01905176.
  • Khairetidinov, E. F., T. V. Mulina, and V. V. Boldyrev. 1976. Nucleation mechanism during low temperature decomposition of ammonium perchlorate. J. Solid State Chemistry 17 ([1–2]):213–19. doi:10.1016/0022-4596(76)90222-X.
  • Kishore, K., and K. Sridhara. 1999. Solid propellant chemistry: condensed phase behaviour of ammonium perchlorate-based solid propellants. Delhi: DESIDOC.
  • Klotz, I. M., and R. M. Rosenberg. 2000. Chemical thermodynamics: Basic theory and principles. New York: John Wiley.
  • Kumar, H., P. N. Tengli, V. Mishra, P. Tripathi, A. Bhushan, and P. Mishra. 2017. The effect of reduced graphene oxide on the catalytic activity of Cu-Cr-O-TiO2 to enhance the thermal decomposition rate of ammonium perchlorate: An efficient fuel oxidizer for solid rocket motors and missiles. RSC Advances 7:36594–604. doi:10.1039/C7RA06012B.
  • Lai, Q., S. Zhu, X. Luo, M. Zou, and S. Huang. 2012. Ultraviolet-visible spectroscopy of graphene oxides. AIP Advances 2:ID:032146. doi:10.1063/1.4747817.
  • Lakshmi, V. M., S. R. Chakravarty, A. G. Rajedran, and C. R. Thomas. 2016. Effect of crystallization parameters and presence of surfactant on ammonium perchlorate crystal characteristics. Particulate Science and Technology 34 ([3]):308–16. doi:10.1080/02726351.2015.1076102.
  • Li, N., M. Cao, Q. Wu, and C. Hu. 2012. A facile one-step method to produce Ni/Graphene nanocomposites and their application to the thermal decomposition of ammonium Perchlorate. CrystEngComm 14:428–34. doi:10.1039/C1CE05858D.
  • Li, N., Z. Geng, M. Cao, L. Ren, X. Zhao, B. Liu, Y. Tian, and C. Hu. 2013. Well-dispersed ultrafine Mn3O4 nanoparticles on graphene as a promising catalyst for the thermal decomposition of ammonium perchlorate. Carbon 54:124–32. doi:10.1016/j.carbon.2012.11.009.
  • Matar, S. F., G. Campet, and M. A. Subramanian. 2011. Electronic properties of oxides: Chemical and theoretical approaches. Progress in Solid State Chemistry 39:70–95. doi:10.1016/j.progsolidstchem.2011.04.002.
  • Parvez, K., Z. Wu, R. Li, X. Liu, R. Graf, X. Feng, and K. Müllen. 2014. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. Journal of the American Chemical Society 136:6083–91. doi:10.1021/ja5017156.
  • Peiris, S. M., G. I. Pangilinan, and T. P. Russell. 2000. Structural properties of ammonium perchlorate compressed to 5.6 GPa. Journal of Physical Chemistry A104:11188–93. doi:10.1021/jp002168c.
  • Ping, C., F. Li, Z. Jian, and J. Wei. 2006. Preparation of Cu/CNT composite particles and catalytic performance on thermal decomposition of ammonium perchlorate. Propellants Explosives Pyrotechniques 31 ([6]):452–55. doi:10.1002/prep.200600061.
  • Portier, J., H. S. Hilal, I. Saadeddin, S. J. Hwang, M. A. Subramanian, and G. Campet. 2004. Thermodynamic correlations and band gap calculations in metal oxides. Progress in Solid State Chemistry 32:207–17. doi:10.1016/j.progsolidstchem.2005.05.001.
  • Raevsky, A. V., and G. B. Manelis. 1963. On the mechanism of decomposition of ammonium perchlorate (In Russian). Doklady Akademii nauk SSSR 151 ([4]):886–89.
  • Rodriguez-Pesina, M., J. Garcia-Dominguez, F. Garcia-Hernandez, L. M. Flores-Velez, and O. Dominguez. 2017. The thermal decomposition of ammonium perchlorate-aluminum propellants in presence of metallic zinc particles. Material Science and Applications 8 ([6]):436–47. doi:10.4236/msa.2017.86030.
  • Rogers, R. N., and L. C. Smith. 1967. Estimation of the pre-exponential factor from the thermal decomposition curve of unweighed sample. Analytical Chemistry 39 ([8]):1024–25. doi:10.1021/ac60252a009.
  • Shen, Y., S. Yang, P. Zhou, Q. Sun, P. Wang, L. Wan, J. Li, L. Chen, X. Wang, S. Ding, and D. Zhang. 2013. Evolution of the band-gap and optical properties of graphene oxide with controllable reduction level. Carbon 62:157–64. doi:10.1016/j.carbon.2013.06.007.
  • Shteinberg, A. S. 2010. Fast reactions in energetic materials: high-temperature decomposition of rocket propellants and explosives. Berlin: Springer-Verlag.
  • Survase, D. V., M. Gupta, and S. N. Asthana. 2002. The effect of Nd2O3 on the thermal and ballistic properties of ammonium perchlorate (AP) based composite propellants. Progress in Crystal Growth and Characterization of Materials 45 ([1–2]):161–65. doi:10.1016/S0960-8974(02)00043-8.
  • Zhao, J., Z. Liu, Y. Qin, and W. Hu. 2014. Fabrication of Co3O4/graphene oxide composites using supercritical fluid and their catalytic application for the decomposition of Ammonium perchlorate. CrystEngComm 16:2001–08. doi:10.1039/c3ce41535j.
  • Zhong, Y. L., Z. Tian, G. P. Simon, and D. Li. 2015. Scalable production of graphene via wet chemistry: Progress and challenges. Materials Today 18 ([2]):73–78. doi:10.1016/j.mattod.2014.08.019.
  • Zhu, J., G. Zeng, F. Nie, X. Xu, S. Chen, Q. Han, and X. Wang. 2010. Decorating graphene oxide with CuO nanoparticles in a water-isopropanol system. Nanoscale 2:988–94. doi:10.1039/b9nr00414a.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.