303
Views
5
CrossRef citations to date
0
Altmetric
Research Article

The effects of TiH2 on the thermal decomposition performances of ammonium perchlorate-based molecular perovskite (DAP-4)

, , , , , , & show all

References

  • Bostrom, H., J. Hill, and A. Good. 2016. Win Columnar shifts as symmetry-breaking degrees of freedom in molecular perovskites. Physical Chemistry Chemical Physics 18 (46):31881–94. doi:10.1039/C6CP05730F.
  • Chen, J., S. He, B. Huang, L. Zhang, Z. Qiao, J. Wang, et al. 2018. Highly space-confined ammonium perchlorate in three-dimensional hierarchically ordered porous carbon with improved thermal decomposition properties. Applied Surface Science 457:508–15. doi:10.1016/j.apsusc.2018.06.301.
  • Chen, S., Y. Shang, C. He, L. Sun, Z. Ye, W. Zhang, and X. Chen. 2018. Optimizing the oxygen balance by changing the A-site cations in molecular perovskite high-energetic materials. CrystEngComm 20 (46):7458–63. doi:10.1039/C8CE01350K.
  • Chen, S. L., Z. R. Yang, B. J. Wang et al. 2018. Molecular perovskite high-energetic materials. Science China Materials. 61(8):1123–28. doi:10.1007/s40843-017-9219-9.
  • Cheng, Y. F., H. H. Ma, R. Liu, and Z. W. Shen. 2014. Explosion power and desensitization resisting property of emulsion explosives sensitized by MgH2. Journal of Energetic Materials 32 (3):207–18. doi:10.1080/07370652.2013.818078.
  • Cheng, Y. F., X. R. Meng, C. T. Feng, Q. Wang, H. H. Ma et al. 2017. The effect of the hydrogen containing material TiH2 on the detonation characteristics of emulsion explosives. Propellants, Explosives, Pyrotechnics. 42(6):585–91. doi:10.1002/prep.201700045.
  • Cheng, Y. F., Q. Wang, and F. Liu. 2016. The effect of energetic additive of coated MgH2 on the power of emulsion explosives sensitized by glass microballoons. Central European Journal of Energetic Materials 13 (3):349–56. doi:10.22211/cejem/65019.
  • Deng, P., Q. J. Jiao, and H. Ren. 2020. Nano dihydroxylammonium 5,5’-bistetrazole-1,1’-diolate (TKX-50) sensitized by the liquid medium evaporation-induced agglomeration self-assembly. Journal of Energetic Materials 38 (3):253–60. doi:10.1080/07370652.2019.1695018.
  • Deng, P., Q. J. Jiao, and H. Ren. 2021. Laminated ammonium perchlorate-based composite prepared by ice-template freezing-induced assembly. Journal of Materials Science 56 (3):2077–87. doi:10.1007/s10853-020-05174-5.
  • Deng, P., H. Ren, and J. Q. Jiao. 2020. Enhanced thermal decomposition performance of sodium perchlorate by molecular assembly strategy. Ionics 26 (2):1039–44. doi:10.1007/s11581-019-03301-0.
  • Deng, P., H. Ren, and Q. J. Jiao. 2019. Enhanced the combustion performances of ammonium perchlorate-based energetic molecular perovskite using functionalized graphene. Vacuum 169:108882. doi:10.1016/j.vacuum.2019.108882.
  • Deng, P., H. Wang, X. Yang, H. Ren, and J. Q. Jiao. 2020. Thermal decomposition and combustion performance of high-energy ammonium perchlorate-based molecular perovskite. Journal of Alloys and Compounds 827:154257. doi:10.1016/j.jallcom.2020.154257.
  • Ding, J., and Q. Yan. 2017. Progress in organic-inorganic hybrid halide perovskite single crystal: Growth techniques and applications. Science China Materials 60 (11):1063–78. doi:10.1007/s40843-017-9039-8.
  • Froes, F. H., O. N. Senkov, and J. I. Qazi. 2004. Hydrogen as a temporary alloying element in titanium alloys: Thermohydrogen processing. International Materials Reviews 49 (3–4):227–45. doi:10.1179/095066004225010550.
  • Han, K. H., X. M. Zhang, P. Deng, Q. J. Jiao, and E. Y. Chu. 2020. Study of the thermal catalysis decomposition of ammonium perchlorate-based molecular perovskite with titanium carbide MXene. Vacuum 180:109572. doi:10.1016/j.vacuum.2020.109572.
  • Hu, L., Y. Liu, S. Hu, and Y. Wang. 2018. 1T/2H multi-phase MoS2 heterostructures: Synthesis, characterization and thermal catalysis decomposition of dihydroxylammonium5,5-bistetrazole-1,1-diolate. New Journal of Chemistry 43 (26):10434–41. doi:10.1039/C9NJ02749A.
  • Jia, Q., X. Y. Bai, S. Y. Zhu, X. Cao, P. Deng, and L. S. Hu. 2020a. Fabrication and characterization of Nano (H2 dabco)[K(ClO4)3] molecular Perovskite by ball milling. Journal of Energetic Materials 38 (4):377–85. doi:10.1080/07370652.2019.1698675.
  • Jia, Q., P. Deng, X. Li, L. Hu, and X. Cao. 2020b. Insight into the thermal decomposition properties of potassium perchlorate (KClO4)-based molecular perovskite. Vacuum 175:109257. doi:10.1016/j.vacuum.2020.109257.
  • Li, Q., Y. He, and R. Peng. 2015a. Graphitic carbon nitride (g-C3 N4) as a metal-free catalyst for thermal decomposition of ammonium perchlorate. RSC Advances 5 (31):24507–12. doi:10.1039/C5RA01157D.
  • Li, Q., Y. He, and R. Peng. 2015b. Graphitic carbon nitride (g-C 3 N 4) as a metal-free catalyst for thermal decomposition of ammonium perchlorate. RSC Advances 5 (31):24507–12
  • Li, X. X., S. Q. Hu, X. Cao, L. S. Hu, P. Deng, and Z. B. Xie. 2020. Ammonium perchlorate-based molecular perovskite energetic materials: Preparation, characterization, and thermal catalysis performance with MoS2. Journal of Energetic Materials 38 (2):162–69. doi:10.1080/07370652.2019.1679281.
  • Liu, H., P. He, J. C. Feng, and J. Cao. 2009. Kinetic study on nonisothermal dehydrogenation of TiH2 powders. International Journal of Hydrogen Energy 34 (7):3018–25. doi:10.1016/j.ijhydene.2009.01.095.
  • Liu, T., Y. Zhou, and Q. Hu. 2017. Fabrication of compact and stable perovskite films with optimized precursor composition in the fast-growing procedure. Science China Materials 60 (7):608–16. doi:10.1007/s40843-017-9044-y.
  • Nakahara, M., and Y. Yano. 1996. A study of solid propellant containing titanium hydride. Propellants, Explosives, Pyrotechnics 21 (4):203–05. doi:10.1002/prep.19960210409.
  • Ramdani, Y., Q. Liu, H. Huiquan, P. Liu, A. Zegaoui, and J. Wang. 2018. Synthesis and thermal behavior of Cu 2 O flower-like, Cu 2 O-C 60 and Al/Cu 2 O-C 60 as catalysts on the thermal decomposition of ammonium perchlorate. Vacuum 153:277–90. doi:10.1016/j.vacuum.2018.04.030.
  • Shang, Y., R.-K. Huang, S.-L. Chen, C.-T. He, Z.-H. Yu, Z.-M. Ye, W.-X. Zhang, and X.-M. Chen. 2020a. Metal-free molecular perovskite high-energetic materials. Crystal Growth & Design 20 (3):1891–97. doi:10.1021/acs.cgd.9b01592.
  • Shang, Y., Z. H. Yu, R. K. Huang, S. L. Chen, D. X. Liu, X. X. Chen, W. X. Zhang, and X. M. Chen. 2020b. Metal-free hexagonal perovskite high-energetic materials with NH3OH+/NH2NH3+ as B-site cations. Engineering 6 (9):1013–18. doi:10.1016/j.eng.2020.05.018.
  • Wang, H., M. Rehwoldt, X. Wang, Y. Yang, and M. Zachariah. 2019. On the promotion of high temperature AP decomposition with silica mesoparticles. Combustion and Flame 200:296–302. doi:10.1016/j.combustflame.2018.11.021.
  • Yang, D. H., B. Y. Hur, D. P. He, and S. R. Yang. 2007. Effect of decomposition properties of titanium hydride on the foaming process and pore structures of Al alloy melt foam. Materials Science and Engineering 445:415–26. doi:10.1016/j.msea.2006.09.064.
  • Zhou, J., L. Ding, F. Zhao, B. Wang, and J. Zhang. 2020. Thermal studies of novel molecular perovskite energetic material (C6H14N2)[NH4(ClO4)3]. Chinese Chemical Letters 31 (2):554–58. doi:10.1016/j.cclet.2019.05.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.