196
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Nitrocellulose catalyzed with nanothermite particles: advanced energetic nanocomposite with superior decomposition kinetics

, , , , &

References

  • Akahira, T. 1971. Trans. Joint convention of four electrical institutes. Res. Rep. Chiba Inst. Technol 16:22–31.
  • Benhammada, A. et al. 2020. Synthesis and characterization of α-Fe2O3 nanoparticles from different precursors and their catalytic effect on the thermal decomposition of nitrocellulose. Thermochimica Acta 686:178570. doi:10.1016/j.tca.2020.178570.
  • Comet, M. et al. 2017. Nanothermite foams: From nanopowder to object. Chemical Engineering Journal 316:807–12. doi:10.1016/j.cej.2017.02.009.
  • Conkling, J., and C. Mocella, eds. 2012. Chemistry of Pyrotechnics Basic Principles and Theory. Second ed ed. London: CRC.
  • Dai, J. et al. 2018. Facile formation of nitrocellulose-coated Al/Bi2O3 nanothermites with excellent energy output and improved electrostatic discharge safety. Materials & Design 143:93–103. doi:10.1016/j.matdes.2018.01.056.
  • Elbasuney, S. et al. 2017a. Stabilized super-thermite colloids: A new generation of advanced highly energetic materials. Applied Surface Science 419:328–36. doi:10.1016/j.apsusc.2017.05.051.
  • Elbasuney, S. et al. 2018a. Infrared Signature of Novel Super-Thermite (Fe2O3/Mg) Fluorocarbon Nanocomposite for Effective Countermeasures of Infrared Seekers. Journal of Inorganic and Organometallic Polymers and Materials. 28(5):1718–27. doi:10.1007/s10904-018-0808-9.
  • Elbasuney, S. et al. 2018b. Super-Thermite (Al/Fe2O3) Fluorocarbon Nanocomposite with Stimulated Infrared Thermal Signature via Extended Primary Combustion Zones for Effective Countermeasures of Infrared Seekers. Journal of Inorganic and Organometallic Polymers and Materials 28:1718–1727.
  • Elbasuney, S. et al. 2019b. Infrared Spectra of Customized Magnesium/Teflon/Viton Decoy Flares. Combustion, Explosion, and Shock Waves. 55(5):5. doi:10.1134/S0010508219050113.
  • Elbasuney, S. et al. 2019c. The significant role of stabilized colloidal ZrO2 nanoparticles for corrosion protection of AA2024. Environmental Nanotechnology, Monitoring & Management 12:100242. doi:10.1016/j.enmm.2019.100242.
  • Elbasuney, S. et al. 2020a. Novel (MnO2/Al) thermite colloid: An opportunity for energetic systems with enhanced performance. Journal of Materials Science: Materials in Electronics 31 (23):21399–407.
  • Elbasuney, S. et al. 2020b. Multi-component nanocomposite infrared flare with superior infrared signature via synergism of nanothermite and reduced graphene oxide. Journal of Materials Science: Materials in Electronics 31 (14):11520–26.
  • Elbasuney, S. et al. 2020c. Facile synthesis of RGO-Fe2O3 nanocomposite: A novel catalyzing agent for composite propellants. Journal of Materials Science: Materials in Electronics 31 (23):20805–15.
  • Elbasuney, S. et al. 2020d. Novel High Energy Density Material Based on Metastable Intermolecular Nanocomposite. Journal of Inorganic and Organometallic Polymers and Materials. 30(10):3980–88. doi:10.1007/s10904-020-01539-0.
  • Elbasuney, S. et al. 2020e. Synthesis of CuO-distributed carbon nanofiber: Alternative hybrid for solid propellants. Journal of Materials Science: Materials in Electronics 31 (11):8212–19.
  • Elbasuney, S. et al. 2021. Ferric oxide colloid: Novel nanocatalyst for heterocyclic nitramines. Materials in Electronics: Journal of Materials Science.
  • Elbasuney, S., and G. S. El-Sayyad. 2020. The potentials of TiO2 nanocatalyst on HMX thermolysis. Journal of Materials Science: Materials in Electronics 31 (17):14930–40.
  • Elbasuney, S., M. Gobara, and M. Yehia. 2019. Ferrite Nanoparticles: Synthesis, Characterization, and Catalytic Activity Evaluation for Solid Rocket Propulsion Systems. Journal of Inorganic and Organometallic Polymers and Materials 29 (3):721–29. doi:10.1007/s10904-018-1046-x.
  • Elbasuney, S., and M. Yehia. 2019a. Thermal decomposition of ammonium perchlorate catalyzed with CuO nanoparticles. Defence Technology 15 (6):868–74. doi:10.1016/j.dt.2019.03.004.
  • Elbasuney, S., and M. Yehia. 2019b. Ammonium Perchlorate Encapsulated with TiO2 Nanocomposite for Catalyzed Combustion Reactions. Journal of Inorganic and Organometallic Polymers and Materials 29 (4):1349–57. doi:10.1007/s10904-019-01099-y.
  • Elbasuney, S., and M. Yehia. 2020. Ferric Oxide Colloid: A Novel Nano-catalyst for Solid Propellants. Journal of Inorganic and Organometallic Polymers and Materials 30 (3):706–13. doi:10.1007/s10904-019-01339-1.
  • Elbasuney, S. 2014. Dispersion characteristics of dry and colloidal nano-titania into epoxy resin. Powder Technology 268:158–64. doi:10.1016/j.powtec.2014.08.035.
  • Elbasuney, S. 2017b. Novel multi-component flame retardant system based on nanoscopic aluminium-trihydroxide (ATH). Powder Technology 305:538–45. doi:10.1016/j.powtec.2016.10.038.
  • Elbasuney, S. 2017c. Sustainable steric stabilization of colloidal titania nanoparticles. Applied Surface Science 409:438–47. doi:10.1016/j.apsusc.2017.03.013.
  • Elbasuney, S. 2018c. Novel colloidal molybdenum hydrogen bronze (MHB) for instant detection and neutralization of hazardous peroxides. TrAC Trends in Analytical Chemistry 102:272–79. doi:10.1016/j.trac.2018.03.001.
  • Elbasuney, S. 2019a. Steric Stabilization of Colloidal Aluminium Particles for Advanced Metalized-Liquid Rocket Propulsion Systems. Combustion, Explosion, and Shock Waves 55 (3):353–60. doi:10.1134/S0010508219030134.
  • Haag, W. O., B. C. Gates, and H. K. Zinger, eds. 2000. ADVANCES IN CATALYSIS. Vol. 44. San Diego: ACADEMIC PRESS.
  • Jian, G. et al. 2013. Nanothermite reactions: Is gas phase oxygen generation from the oxygen carrier an essential prerequisite to ignition? Combustion and Flame. 160(2):432–37. doi:10.1016/j.combustflame.2012.09.009.
  • Khawam, A., and D. R. Flanagan. 2006. Basics and applications of solid-state kinetics: A pharmaceutical perspective. Journal of Pharmaceutical Sciences 95 (3):472–98. doi:10.1002/jps.20559.
  • Kim, J. H. et al. 2019. Thermal reactions of nitrocellulose-encapsulated Al/CuO nanoenergetic materials fabricated in the gas and liquid phases. Materials Chemistry and Physics 238:121955. doi:10.1016/j.matchemphys.2019.121955.
  • Meyer, R., J. Kohler, and A. Homburg, eds. 2007. EXPLOSIVES. Sixth ed ed. Weinheim: WILEY.
  • Shin, D. J. et al. 2018. Nanothermite of Al nanoparticles and three-dimensionally ordered macroporous CuO: Mechanistic insight into oxidation during thermite reaction. Combustion and Flame 189:87–91. doi:10.1016/j.combustflame.2017.10.018.
  • Trache, D. et al. 2016. Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability. Journal of Thermal Analysis and Calorimetry. 124(3):1485–96. doi:10.1007/s10973-016-5293-1.
  • Trache, D., A. Abdelaziz, and B. Siouani. 2017. A simple and linear isoconversional method to determine the pre-exponential factors and the mathematical reaction mechanism functions. Journal of Thermal Analysis and Calorimetry 128 (1):335–48. doi:10.1007/s10973-016-5962-0.
  • Vyazovkin, S. et al. 2011. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica acta. 520(1–2):1–19. doi:10.1016/j.tca.2011.03.034.
  • Zhang, X., and B. L. Weeks. 2014. Preparation of sub-micron nitrocellulose particles for improved combustion behavior. Journal of Hazardous Materials 268:224–28. doi:10.1016/j.jhazmat.2014.01.019.
  • Zhou, X. et al. 2017. Facile preparation and energetic characteristics of core-shell Al/CuO metastable intermolecular composite thin film on a silicon substrate. Chemical Engineering Journal 328:585–90. doi:10.1016/j.cej.2017.07.092.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.