434
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A novel ternary energetic compound: DAF/DNP/H2O cocrystal

, , , , , , , , & show all

References

  • Ballini, R., E. Marcantoni, and M. Petrini. 1992. Synthesis of functionalized nitroalkanes by oxidation of oximes with urea-hydrogen peroxide complex and trifluoroacetic anhydride. Tetrahedron Letters 33 (33):4835–38. doi:10.1016/S0040-4039(00)61298-4.
  • Bennion, J. C., N. Chowdhury, J. W. Kampf, and A. J. Matzger. 2016. Hydrogen peroxide solvates of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane. Angewandte Chemie International Edition 55 (42):13118–21. doi:10.1002/anie.201607130.
  • Bennion, J. C., Z. R. Siddiqi, and A. J. Matzger. 2017. A melt castable energetic cocrystal. Chemical Communications 53 (45):6065–68. doi:10.1039/C7CC02636F.
  • Bolton, O., and A. J. Matzger. 2011. Improved stability and smart‐material functionality realized in an energetic cocrystal. Angewandte Chemie International Edition 50 (38):8960–63. doi:10.1002/anie.201104164.
  • Bolton, O., L. R. Simke, P. F. Pagoria, and A. J. Matzger. 2012. High power explosive with good sensitivity: A 2:1 cocrystal of CL-20:HMX. Crystal Growth & Design 12 (9):4311–14. doi:10.1021/cg3010882.
  • Chernyshov, I. Y., M. V. Vener, P. V. Prikhodchenko, A. G. Medveddev, O. Lev, and A. V. Churakov. 2017. Peroxosolvates: Formation criteria, H2O2 hydrogen bonding, and isomorphism with the corresponding hydrates. Crystal Growth & Design 17 (1):214–20. doi:10.1021/acs.cgd.6b01449.
  • Keshavarz, M. H., R. T. Mofrad, R. F. Alamdari, M. H. Moghadas, A. R. Mostofizadeh, and H. Sadeghi. 2006. Velocity of detonation at any initial density without using heat of formation of explosives. Journal of Hazardous Materials 137 (3):1328–32. doi:10.1016/j.jhazmat.2006.05.002.
  • Klapötke, T. M., A. Penger, C. Pfluger, and J. Stierstorfer. 2016. Melt-cast materials: Combining the advantages of highly nitrated azoles and open-chain nitramines. New Journal of Chemistry 40 (7):6059–69. doi:10.1039/C6NJ00202A.
  • Mathieu, D. 2018. Accurate or fast prediction of solid-state formation enthalpies using standard sublimation enthalpies derived from geometrical fragments. Industrial & Engineering Chemistry Research 57 (41):13856–65. doi:10.1021/acs.iecr.8b03001.
  • National Military Standard of China. 1997. Experimental Methods of Sensitivity and Safety GJB/772A-97 (in Chinese).
  • Ravi, P., D. M. Badgujar, G. M. Gore, S. P. Tewari, and A. K. Sikder. 2011. Review on melt cast explosives. Propellants, Explosives, Pyrotechnics 36 (5):393–403. doi:10.1002/prep.201100047.
  • Sikder, N., A. K. Sikder, N. R. Bulakh, and B. R. Gandhe. 2004. 1,3,3-Trinitroazetidine (TNAZ), a melt-cast explosive: Synthesis, characterization and thermal behaviour. Journal of Hazardous Materials 113 (1–3):35–43. doi:10.1016/j.jhazmat.2004.06.002.
  • Stoner, C. E., and T. B. Brill. 1991. Thermal decomposition of energetic materials 46. The formation of melamine-like cyclic azines as a mechanism for ballistic modification of composite propellants by DCD, DAG, and DAF. Combustion and Flame 83 (3–4):302–08. doi:10.1016/0010-2180(91)90077-O.
  • Sueska, M. 1999. Evaluation of detonation energy from EXPLO5 computer code results. Propellants Explosives Pyrotechnics 24 (5):280–85. doi:10.1002/(SICI)1521-4087(199910)24:53.0.CO;2-w.
  • Tan, Y.-W., Z.-W. Yang, H.-J. Wang, H.-Z. Li, F.-D. Nie, Y.-C. Liu, and Y.-W. Yu. 2019. High energy explosive with low sensitivity: A new energetic cocrystal based on CL-20 and 1, 4-DNI. Crystal Growth & Design 19 (8):4476–82. doi:10.1021/acs.cgd.9b00250.
  • Wang, Y., S.-W. Song, C. Huang, X.-J. Qi, K.-C. Wang, Y.-J. Liu, and Q.-H. Zhang. 2019. Hunting for advanced high-energy-density materials with well-balanced energy and safety through an energetic host–guest inclusion strategy. Journal of Materials Chemistry A 7 (33):19248–57. doi:10.1039/C9TA04677A.
  • Wu, J.-T., J.-G. Zhang, T. Li, Z.-M. Li, and T.-L. Zhang. 2015. A novel cocrystal explosive NTO/TZTN with good comprehensive properties. Rsc Advances 5 (36):28354–59. doi:10.1039/C5RA01124H.
  • Xu, -J.-J., -S.-S. Zheng, S.-L. Huang, Y. Tian, Y. Liu, H.-B. Zhang, and J. Sun. 2019. Host–guest energetic materials constructed by incorporating oxidizing gas molecules into an organic lattice cavity toward achieving highly-energetic and low-sensitivity performance. Chemical Communications 55 (7):909–12. doi:10.1039/C8CC07347C.
  • Yang, Z.-W., H.-Z. Li, X.-Q. Zhou, C.-Y. Zhang, H. Huang, J.-S. Li, and F.-D. Nie. 2012. Characterization and properties of a novel energetic–energetic cocrystal explosive composed of HNIW and BTF. Crystal Growth & Design 12 (11):5155–58. doi:10.1021/cg300955q.
  • Zohari, N., and F. G. Mohammadkhani. 2020. Detonation velocity assessment of energetic cocrystals using QSPR approach. Zeitschrift Für Anorganische Und Allgemeine Chemie 646 (1):30–35. doi:10.1002/zaac.201900202.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.