409
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Multiscale investigation of the microstructural mechanisms driving ratchet growth in PBX 9502

, , , &

References

  • Bedrov, D., O. Borodin, G. D. Smith, T. D. Sewell, D. M. Dattelbaum, and L. L. Stevens. 2009. A molecular dynamics simulation study of crystalline 1,3,5-triamino-2,4,6-trinitrobenzene as a function of pressure and temperature, J. Chem. Phys 131:224703.
  • Bennett, K. C., and D. J. Luscher. 2019. Effective thermoelasticity of polymer-bonded particle composites with imperfect interfaces and thermally expansive interphases. Journal of Elasticity 136:55–85.
  • Bennett, K. C., D. J. Luscher, M. A. Buechler, and J. D. Yeager. 2018. A micromechanical framework and modified self-consistent homogenization scheme for the thermoelasticity of porous bonded-particle assemblies. International Journal of Solids and Structures. doi:10.1016/j.ijsolstr.2018.02.001.
  • Bennett, K. C., M. Zecevic, D. J. Luscher, and R. A. Lebensohn. 2020. A thermo-elastoplastic self-consistent homogenization method for inter-granular plasticity with application to thermal ratcheting of TATB. Advanced Modeling and Simulation in Engineering Sciences 7:3.
  • Brown, G. W., D. G. Thompson, R. DeLuca, E. L. Hartline, and S. I. Hagelberg. DENSITY‐DEPENDENT ACOUSTIC PROPERTIES OF PBX 9502, AIP Conference Proceedings, Nashville, TN, USA, 1195, (2009) 373–76.
  • Bryant, E. C., K. C. Bennett, N. A. Miller, and A. Misra. 2021. Multiscale plasticity of geomaterials predicted via constrained optimization-based granular micromechanics. International Journal for Numerical and Analytical Methods in Geomechanics. doi:10.1002/nag.3320.
  • Cady, H. H., and A. C. Larson. 1965. The crystal structure of 1,3,5-triamino-2,4,6-trinitrobenzene. Acta Crystallographica 18:485–96.
  • Campbell, A. W., Diameter Effect and Failure Diameter of a TATB-Based Explosive, Propellants, Explosives, Pyrotechnics, 9 (1984) 183–87.
  • Dallman, J., and J. Wackerle, Temperature-dependent shock initiation of TATB-based high explosives, 10th International Symposium on Detonation, Boston, MA, USA, 1993.
  • Dobratz, B. M., The Insensitive High Explosive Triaminotrinitrobenzene (TATB): Development and Characterization—1888 to 1994, Los Alamos National Laboratory, 1995.
  • Duncan, A., Inter-and intra-laboratory sieve analysis of TATB, Mason and Hanger-Silas Mason Co., Inc., Amarillo, Tex. (USA), 1977.
  • Gee, R. H., A. Maiti, and L. E. Fried, Mesoscale modeling of irreversible volume growth in powders of anisotropic crystals, Applied Physics Letters, 90 (2007) 254105.
  • Hill, L. G., D. G. Thompson, and H. H. Cady, On the ratchet growth of TATB-based explosives, LA-UR-11-02208, Los Alamos National Lab. (LANL), Los Alamos, NM (United States), 2011.
  • Hoffman, D. M., and A. T. Fontes, Density Distributions in TATB Prepared by Various Methods, Propellants, Explosives, Pyrotechnics, 35 (2010) 15–23.
  • Honodel, C., J. Humphrey, R. Weingart, R. Lee, and P. Kramer, Shock initiation of TATB formulations, Proceedings of the 7th Symposium (International) on Detonation, Annapolis, MD, USA, 1982, pp. 425–34.
  • Kim, S., A. Barua, Y. Horie, and M. Zhou, Ignition probability of polymer-bonded explosives accounting for multiple sources of material stochasticity, 115 (2014) 174902.
  • Kinney, J., T. Willey, and G. Overturf, On the nature of variations in density and composition within TATB-based plastic bonded explosives, Lawrence Livermore National Laboratory, Livermore, CA (United States), 2006.
  • Kolb, J. R., and H. F. Rizzo. 1979. Growth of 1,3,5-Triamino-2,4,6-trinitrobenzene (TATB) I. Anisotropic Thermal Expansion, Propellants Explos. Pyrotech 4:10–16.
  • Li, Y., Y. Zhang, E.-H. Yang, and K. H. Tan. 2019. Effects of geometry and fraction of polypropylene fibers on permeability of ultra-high performance concrete after heat exposure, Cem. Concr. Res 116:168–78.
  • Luscher, D., J. Yeager, B. Clausen, S. Vogel, A. Higginbotham Duque, and D. Brown. 2017. Using Neutron Diffraction to Investigate Texture Evolution During Consolidation of Deuterated Triaminotrinitrobenzene (d-TATB) Explosive Powder. Crystals 7:138.
  • Maienschein, J. L., and F. Garcia. 2002. Thermal expansion of TATB-based explosives from 300 to 566 K. Thermochim. Acta 384:71–83.
  • Mang, J. T., and R. P. Hjelm. 2013. Fractal Networks of Inter-Granular Voids in Pressed TATB. Propellants Explos. Pyrotech 38:831–40.
  • Manner, V. W., J. D. Yeager, B. M. Patterson, D. J. Walters, J. A. Stull, N. L. Cordes, D. J. Luscher, K. C. Henderson, A. M. Schmalzer, and B. C. Tappan. 2017. In Situ Imaging during Compression of Plastic Bonded Explosives for Damage Modeling. Materials 10:638.
  • Molek, C. D., E. J. Welle, J. O. Mares Jr, J. Vitarelli, D. B. Hardin, and M. Stuthers. 2020. Impact of void structure on initiation sensitivity. Propellants Explos. Pyrotech 45:236–42.
  • Mulford, Roberta N., and Joseph A. Romero. Sensitivity of the TATB-based explosive PBX-9502 after thermal expansion. AIP Conference Proceedings, Amherst, MA, USA, Vol. 429, No. 1. American Institute of Physics, (1998) 723–26.
  • Nandi, A. K., S. M. Kasar, U. Thanigaivelan, M. Ghosh, A. K. Mandal, and S. C. Bhattacharyya. 2007. Synthesis and Characterization of Ultrafine TATB. J. Energ. Mater 25:213–31.
  • Nichols, A. L., and C. M. Tarver. A Statistical Hot Spot Reactive Flow Model for Shock Initiation and Detonation of Solid High Explosives, Twelfth International Detonation Symposium, International Detonation Symposium, San Diego, CA, USA, 2002.
  • Olles, J. D., R. R. Wixom, R. Knepper, and A. S. Tappan. 2019. Observations of shock-induced chemistry with subnanosecond resolution. Appl. Phys. Lett 114:214102.
  • Palmer, S. J. P., J. E. Field, J. M. Huntley, and S. Deformation. 1993. Strains to Failure of Polymer Bonded Explosives. Proc. R. Soc. London, Ser. A 440:399–419.
  • Papadopulos, F., M. Spinelli, S. Valente, L. Foroni, C. Orrico, F. Alviano, and G. Pasquinelli. 2007. Common Tasks in Microscopic and Ultrastructural Image Analysis Using ImageJ. Ultrastructural Pathology 31:401–07.
  • Perry, W. L., A. L. H. Duque, J. D. Yeager, L. G. Hill, and V. H. Whitley, Can we predict how nano-scopic voids affect explosive performance? AIP Conference Proceedings, AIP Publishing LLC, 2272, No. 1, (2020) 070036.
  • Peterson, P. D., and D. J. Idar. 2005. Microstructural Differences between Virgin and Recycled Lots of PBX 9502. Propellants Explos. Pyrotech 30:88–94.
  • Rae, P. J., H. T. Goldrein, S. J. P. Palmer, J. E. Field, and A. L. Lewis, Quasi-Static Studies of the Deformation and Failure of β-HMX Based Polymer Bonded Explosives, Proceedings: Mathematical, Physical and Engineering Sciences, 458 (2002) 743–62. https://doi.org/10.1098/rspa.2001.0894
  • Rai, N. K., M. J. Schmidt, and H. S. Udaykumar. (2017). Collapse of elongated voids in porous energetic materials: Effects of void orientation and aspect ratio on initiation. Physical Review Fluids, Vol. 2, 043201. https://doi.org/10.1103/PhysRevFluids.2.043201
  • Rai, N. K., O. Sen, and H. S. Udaykumar, 2020. Macro-scale sensitivity through meso-scale hotspot dynamics in porous energetic materials: Comparing the shock response of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) and 1,3,5,7-tetranitro-1,3,5,7-tetrazoctane (HMX), J. Appl. Phys, 128 (8): 085903.
  • Rizzo, H. F., J. R. Humphrey, and J. R. Kolb. 1981. Growth of 1,3,5-Triamino-2,4,6,-Trinitrobenzene (TATB). II. Control of Growth by Use of High Tg Polymeric Binders. Propellants, Explosives, Pyrotechnics 6 (2): 27–36.
  • Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9:671–75.
  • Schwarz, R. B., G. W. Brown, D. G. Thompson, B. W. Olinger, J. Furmanski, and H. H. Cady. 2013. The Effect of Shear Strain on Texture in Pressed Plastic Bonded Explosives. Propellants Explos. Pyrotech 38:685–94.
  • Schwarz, R. B. 2019. Model for ratchet growth in PBX 9502. Acta Mater 180:170–79.
  • Skidmore, C. B., T. A. Butler, and C. W. Sandoval, The Elusive Coefficients of Thermal Expansion in PBX 9502, 2003.
  • Talawar, M. B., A. P. Agarwal, M. Anniyappan, G. M. Gore, S. N. Asthana, and S. Venugopalan. 2006. Method for preparation of fine TATB (2–5μm) and its evaluation in plastic bonded explosive (PBX) formulations. J. Hazard. Mater 137:1848–52.
  • Tappan, A. S., R. R. Wixom, and R. Knepper, Critical detonation thickness in vapor-deposited hexanitroazobenzene (HNAB) films with different preparation conditions, Fifteenth International Detonation Symposium, Office of Naval Research, San Francisco, CA, 2014.
  • Thompson, D. G., C. S. Woznick, and R. DeLuca, The volumetric coefficient of thermal expansion of PBX 9502, Los Alamos National Lab. (LANL), Los Alamos, NM (United States), 2018.
  • Thompson, D. G., G. W. Brown, B. Olinger, J. T. Mang, B. Patterson, R. DeLuca, and S. Hagelberg. 2010. The Effects of TATB Ratchet Growth on PBX 9502. Propellants Explos. Pyrotech 35:507–13.
  • Underwood, E. E. 1973. Quantitative stereology for microstructural analysis, Microstructural analysis, 35–66. Boston, MA, USA: Springer.
  • Valenzano, L., W. J. Slough, and W. Perger, Accurate prediction of second-order elastic constants from first principles: PETN and TATB. AIP Conference Proceedings, Chicago, IL, USA, American Institute of Physics, 1426, No 1. (2012) 1191–94.
  • Vanderesse, N., É. Maire, A. Chabod, and J. Y. Buffière. 2011. Microtomographic study and finite element analysis of the porosity harmfulness in a cast aluminium alloy. Int. J. Fatigue 33:1514–25.
  • Walters, D. J., D. J. Luscher, and J. D. Yeager, 3D micromechanical simulation of PBX composites, AIP Conference Proceedings, Portland, OR, USA, AIP Publishing LLC, 2020, pp. 070052.
  • Willey, T. M., D. M. Hoffman, T. Van buuren, L. Lauderbach, R. H. Gee, A. Maiti, G. E. Overturf, L. E. Fried, and J. Ilavsky, The Microstructure of TATB-Based Explosive Formulations During Temperature Cycling Using Ultra-Small-Angle X-Ray Scattering, Propellants Explos. Pyrotech., 34 (2009) 406–14.
  • Willey, T. M., L. Lauderbach, F. Gagliardi, B. Cunningham, K. T. Lorenz, J. I. Lee, T. van Buuren, R. Call, L. Landt, and G. Overturf, Comprehensive Characterization of Voids and Microstructure in TATB-based Explosives from 10 nm to 1 cm: Effects of Temperature Cycling and Compressive Creep, Fourteenth International Detonation Symposium, Coeur d’Alene, ID, United States, 2010.
  • Williams, J. J., Z. Flom, A. A. Amell, N. Chawla, X. Xiao, and F. De Carlo. 2010. Damage evolution in SiC particle reinforced Al alloy matrix composites by X-ray synchrotron tomography. Acta Mater 58:6194–205.
  • Wixom, R. R., A. S. Tappan, A. L. Brundage, R. Knepper, M. B. Ritchey, J. R. Michael, and M. J. Rye. 2010. Characterization of pore morphology in molecular crystal explosives by focused ion-beam nanotomography. J. Mater. Res 25:1362–70.
  • Woznick, C. S., D. G. Thompson, R. DeLuca, B. M. Patterson, and T. A. Shear, July. Thermal cycling and ratchet growth of as-pressed TATB pellets. AIP Conference Proceedings, St. Louis, MO, USA, AIP Publishing LLC, 1979, No 1, (2018) 060011.
  • Yeager, J. D., D. J. Luscher, S. C. Vogel, B. Clausen, and D. W. Brown. 2016. Neutron Diffraction Measurements and Micromechanical Modelling of Temperature-Dependent Variations in TATB Lattice Parameters. Propellants Explos. Pyrotech 41:514–25.
  • Yeager, J. D., L. A. Kuettner, A. L. Duque, L. G. Hill, and B. M. Patterson. 2020. Microcomputed X-Ray Tomographic Imaging and Image Processing for Microstructural Characterization of Explosives. Materials 13:4517.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.