510
Views
5
CrossRef citations to date
0
Altmetric
Review

Reduced sensitivity and enhanced thermal stability of ultrafine-CL-20/PDA/Estane5703 composites with double coating structure

, , , , , , , & show all

References

  • An, C., H. Li, B. Ye et al. 2017. Nano-CL-20/HMX cocrystal explosive for significantly reduced mechanical sensitivity[J]. Journal of Nanomaterials 2017:7. doi:10.1155/2017/3791320.
  • Bayat, Y., and V. Zeynali. 2011. Preparation and characterization of nano-CL-20 explosive[J]. Journal of Energetic Materials 29 (4):281–91. doi:10.1080/07370652.2010.527897.
  • Bernsmann, F., V. Ball, F. Ad Diego et al. 2011. Dopamine-melanin film deposition depends on the used oxidant and Buffer solution[J]. Langmuir 27 (6):2819–25. doi:10.1021/la104981s.
  • Elbeih, A., A. Husarova, and S. Zeman. 2011. Path to ε-HNIW with reduced impact sensitivity[J]. Central European Journal of Energetic Materials 8 (3):173–82.
  • Elbeih, A., M. Jungová, S. Zeman et al. 2012. Explosive strength and impact sensitivity of several PBXs based on attractive cyclic nitramines[J]. Propellants Explosives Pyrotechnics 37 (3):329–34. doi:10.1002/prep.201100020.
  • Foltz, M. F. 1994. Thermal stability of ε‐hexanitrohexaazaisowurtzitane in an estane formulation[J]. Propellants Explosives Pyrotechnics 19 (2):63–69. doi:10.1002/prep.19940190202.
  • G, S. C., L. X. D, Y. Yang et al. Formation and characterization of core-shell CL-20/TNT composite prepared by spray-drying technique[J]. Defence Technology, 2021. doi:10.1016/j.dt.2020.12.005
  • Golfier, M., H. Graindorge, Y. Longevialle et al. New energetic molecules and their applications in energetic materials.1998.
  • Gong, F., Z. Yang, W. Qian et al. 2019. Kinetics for the inhibited polymorphic transition of HMX crystal after strong surface confinement[J]. The Journal of Physical Chemistry C 123 (17):11011–19. doi:10.1021/acs.jpcc.9b01582.
  • Gong, F., J. Zhang, D. Ling et al. 2017. Mussel-inspired coating of energetic crystals: A compact core–shell structure with highly enhanced thermal stability[J]. The Chemical Engineering Journal 309. doi:10.1016/j.cej.2016.10.020.
  • Guo, C., D. Wang, B. Gao et al. 2015. Solid–solid phase transition study of ε-CL-20/binder composites[J]. Rsc Advances 6 (2):859–65. doi:10.1039/c5ra20867j.
  • He, G., Z. Yang, L. Pan et al. 2017. Bioinspired interfacial reinforcement of polymer-based energetic composites with a high loading of solid explosive crystals[J]. Journal of Materials Chemistry A 5. doi:10.1039/c7ta03424e.
  • Hoffman, D. M. 2002. Dynamic mechanical signatures of a polyester‐urethane and plastic‐bonded explosives based on this polymer[J]. Journal of Applied Polymer Science 83 (5):1009–24. doi:10.1002/app.2281.
  • Ji, W., L. X. D, W. J. Y et al. 2015. Preparation and characterization of nano-ε-CL-20/Estane explosive[J]. Chinese Journal of Energetic Materials doi:10.16251/j.cnki.1009-2307.2015.11.009.
  • Kholod, Y., S. Okovytyy, G. Kuramshina et al. 2007. An analysis of stable forms of CL-20: A DFT study of conformational transitions, infrared and Raman spectra[J]. Journal of Molecular Structure 843 (1–3):14–25. doi:10.1016/j.molstruc.2006.12.031.
  • Klanwan, J., N. Akrapattangkul, V. Pavarajarn et al. 2010. Single-step synthesis of MWCNT/ZnO nanocomposite using co-chemical vapor deposition method[J]. Materials Letters 64 (1):80–82. doi:10.1016/j.matlet.2009.10.015.
  • L, S. R., U. P. A, O. D. L et al. 2010. CL‐20 performance exceeds that of HMX and its sensitivity is moderate[J]. Propellants Explosives Pyrotechnics 22 (5):249–55. doi:10.1002/prep.19970220502.
  • Lee, H., D. S. M, M. W. M et al. 2007. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science 318 (5849):426–30. doi:10.1126/science.1147241.
  • Lee, H., N. F. Scherer, and P. B. Messersmith. 2006. Single-molecule mechanics of mussel adhesion[J]. Proceedings of the National Academy of Sciences 103 (35):12999–3003. doi:10.1073/pnas.0605552103.
  • Li, J., and T. Brill. 2010. Kinetics of solid polymorphic phase transitions of CL‐20[J]. Propellants, Explosives, Pyrotechnics 32 (4):326–30. doi:10.1002/prep.200700036.
  • Li, P., K. Liu, D. Ao et al. 2018. A low-sensitivity nanocomposite of CL-20 and TATB[J]. Crystal Research and Technology 53 (11):1800189. doi:10.1002/crat.201800189.
  • Li, Y., Z. Yang, J. Zhang et al. 2017. Fabrication and characterization of HMX@TPEE energetic microspheres with reduced sensitivity and superior toughness properties[J]. Composites Science and Technology 142 (Apr.12):253–63. doi:10.1016/j.compscitech.2017.02.017.
  • Lin, C., Zeng, C., Wen, Y., et al. 2020. Litchi-like core–shell HMX@HPW@PDA microparticles for polymer-bonded energetic composites with low sensitivity and high mechanical properties[J]. ACS Applied Materials and Interfaces 12 (3):4002–13. doi:10.1021/acsami.9b20323.
  • Lin, C., B. Huang, F. Gong et al. 2019. Core@double-shell structured energetic composites with reduced sensitivity and enhanced mechanical properties[J]. ACS Applied Materials & Interfaces 11 (33):30341–51. doi:10.1021/acsami.9b10506.
  • Lin, C., Q. Tian, K. Chen et al. 2017. Polymer bonded explosives with highly tunable creep resistance based on segmented polyurethane copolymers with different hard segment contents[J]. Composites Science and Technology 146 (Jul.7):10–19. doi:10.1016/j.compscitech.2017.04.008.
  • Ma, Z., B. Gao, P. Wu, J. Shi, Z. Qiao, Z. Yang, G. Yang, B. Huang, and F. Nie. 2015. Facile, continuous and large-scale production of core–shell HMX@ TATB composites with superior mechanical properties by a spray-drying process. RSC Advances 5 (27):21042–49. doi:10.1039/c4ra16527f.
  • Mao, X., Y. Li, Y. Li et al. 2019. Thermal properties of decomposition and explosion for CL-20 and CL-20/n-Al[J]. Journal of Energetic Materials 1–13. doi:10.1080/07370652.2019.1668875.
  • N, Z. A., L. I. O, B. N. G et al. 2009. Aluminized nitramine-based nanocomposites: Manufacturing technique and structure study[J]. Combustion Explosion and Shock Waves 45 (6):666–77. doi:10.1007/s10573-009-0083-8.
  • Nielsen, A. T. Synthesis of Polynitropolyaza Caged Nitramines; Chemical Propulsion Information Agency:Columbia, MD, USA,1987.
  • R, S. M., L. J. M, R. B. G et al. 2010. Degradation of a poly (ester urethane) elastomer. III. Estane 5703 hydrolysis: Experiments and modeling[J]. Journal of Polymer Science Part A Polymer Chemistry 41(8). doi: 10.1002/pola.10656.
  • R, N. U., R. Sivabalan, G. G. M et al. 2005. Hexanitrohexaazaisowurtzitane (CL-20) and CL-20-based formulations (review)[J]. Combustion. Explosion and Shock Waves 41 (2):121–32. doi:10.1007/s10573-005-0014-2.
  • Ramaswamy, L. A. 2006. Mesoscopic approach to energetic material sensitivity[J]. Journal of Energetic Materials 24 (1):35–65. doi:10.1080/07370650500374342.
  • T, N. A., N. R. A, V. D. J et al. 1990. Polyazapolycyclics by condensation of aldehydes with amines. 2. Formation of 2,4,6,8,10,12-hexabenzy l-2,4,6,8,10,12-hexaazatetracyclo - [5.5.0.05.9.03,11] dodecanes from glyoxal and benzylamines[J]. Cheminform 21(32). doi: 10.1002/chin.199032201.
  • Tarver, C. M., R. L. Simpson, and P. A. Urtiew. 1995. Shock initiation of an (epsilon)-CL-20-estane formulation. American Institute of Physics. doi:10.1063/1.50589.
  • Turcotte, R., M. Vachon, Q. Kwok et al. 2005. Thermal study of HNIW (CL-20) [J]. Thermochimica Acta 433 (1):105–15. doi:10.1016/j.tca.2005.02.021.
  • Ulrich, Teipel, Ulrich et al. 1997. Formation of particles of explosives with supercritical fluids[J]. Propellants, Explosives, Pyrotechnics 22 (3):165–69. doi:10.1002/prep.19970220313.
  • Wang, D., G. Bing, and G. Yang, et al. 2016. Preparation of CL-20 Explosive Nanoparticles and Their Thermal Decomposition Property[J]. Journal of Nanomaterials 2016:20. doi:10.1155/2016/5462097.
  • Yang, Z., L. Ding, P. Wu et al. 2015. Fabrication of RDX, HMX and CL-20 based microcapsules via in situ polymerization of melamine–formaldehyde resins with reduced sensitivity[J]. Chemical Engineering Journal -Lausanne- 268 (1):60–66. doi:10.1016/j.cej.2015.01.024.
  • Zhang, S., Z. Gao, Q. Jia et al. 2020. Bioinspired strategy for HMX@hBNNS dual shell energetic composites with enhanced desensitization and improved thermal property[J]. Advanced Materials Interfaces doi:10.1002/admi.202001054.
  • Zhang, S., Z. Gao, Q. Jia et al. 2020. Fabrication and characterization of surface modified HMX@PANI core-shell composites with enhanced thermal properties and desensitization via in situ polymerization[J]. Applied Surface Science 515:146042. doi:10.1016/j.apsusc.2020.146042.
  • Zhang, J., X. Guo, Q. Jiao et al. 2018. Effects of desensitizers on phase transitions, thermal behavior, and sensitivity of ε-CL-20[J]. Journal of Energetic Materials 36 (1):111–20. doi:10.1080/07370652.2017.1326188.
  • Zhang, H., Q. Jiao, W. Zhao et al. 2020. Enhanced crystal stabilities of ε-CL-20 via core-shell structured energetic composites[J]. Applied Sciences 10 (8):2663. doi:10.3390/app10082663.
  • Zhu, Y., Y. Lu, B. Gao et al. 2017. Ultrasonic-assisted emulsion synthesis of well-distributed spherical composite CL-20@ PNA with enhanced high sensitivity[J]. Materials Letters 205:94–97. doi:10.1016/j.matlet.2017.06.064.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.