307
Views
1
CrossRef citations to date
0
Altmetric
Research Article

An interesting 3D energetic metal - framework based Ag(I) ions and 3,4-diaminofurazan

, , , , , , ORCID Icon & show all

References

  • Bian, C., K. Wang, L. Liang, M. Zhang, C. Li, and Z. Zhou. 2014. Nitrogen-Rich Energetic Salts of Bis-Heterocycle-Substituted 1, 2, 3-Triazole (HTANFT). European Journal of Inorganic Chemistry 2014 (35):6022–30. doi:10.1002/ejic.201402692.
  • Bushuyev, O. S. P. B., A. Maiti, R. H. Gee, G. R. Peterson, B. L. Weeks, and L. J. Hope-Weeks. 2012. Ionic polymers as a new structural motif for high-energy-density materials. Journal of the American Chemical Society 134 (3):1422–25. doi:10.1021/ja209640k.
  • Churakov, A. M., S. E. Semenov, S. L. Ioffe, Y. A. Strelenko, and V. A. Tartakovskii. 1995. The oxidation of heterocyclic amines to nitro compounds using dinitrogen pentoxide. Mendeleev Communications 3 (5):102–03. doi:10.1002/chin.199538078.
  • Cudziło, S., and M. Nita. 2010. Synthesis and explosive properties of copper (II) chlorate (VII) coordination polymer with 4-amino-1, 2, 4-triazole bridging ligand. Journal of Hazardous Materials 177 (1–3):146–49. doi:10.1016/j.jhazmat.2009.12.008.
  • Driessen, W. L., and P. L. A. Everstijn. 1978. Metal (II) Complexes of 1, 2, 5-Oxadiazole. Zeitschrift für Naturforschung B 33 (10):1120–23. doi:10.1515/znb-1978-1016.
  • Fischer, D., T. M. Klapötke, M. Reymann, J. Stierstorfer, and M. B. R. Völkl. 2015. Energetic alliance of tetrazole-1-oxides and 1, 2, 5-oxadiazoles. New Journal of Chemistry 39 (3):1619–27. doi:10.1039/C4NJ01351D.
  • Friedrich, M., J. C. Gálvez-Ruiz, T. M. Klapötke, P. Mayer, B. Weber, and J. J. Weigand. 2005. BTA copper complexes. Inorganic Chemistry 44 (22):8044–52. doi:10.1021/ic050657r.
  • Getman, R. B., Y. S. Bae, C. E. Wilmer, and R. Q. Snurr. 2012. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal–organic frameworks. Chemical Reviews 112 (2):703–23. doi:10.1021/cr200217c.
  • Gong, L., G. Chen, Y. Liu, T. Wang, J. Zhang, X. Yi, and P. He. 2021. Energetic metal–organic frameworks achieved from furazan and triazole ligands: Synthesis, crystal structure, thermal stability and energetic performance. New Journal of Chemistry 45 (47):22299–305. doi:10.1039/D1NJ04486A.
  • Han, J., Y. Zhuo, Y. Chai, and R. Yuan. 2014. Dual-responses for electrochemical and electrochemiluminescent detection based on a bifunctional probe. Chemical Communications 50 (25):3367–69. doi:10.1039/C3CC49319A.
  • Huang, H., Z. Zhou, L. Liang, J. Song, K. Wang, D. Cao, C. Bian, W. Sun, and M. Xue. 2012. Nitrogen-Rich Energetic Dianionic Salts of 3, 4-Bis (1H-5-tetrazolyl) furoxan with Excellent Thermal Stability. Zeitschrift für anorganische und allgemeine Chemie 638 (2):392–400. doi:10.1002/zaac.201100470.
  • Huo, P., T. Chen, J. Hou, L. Yu, Q. Zhu, and J. Dai. 2016. Ligand-to-ligand charge transfer within metal–organic frameworks based on manganese coordination polymers with tetrathiafulvalene-bicarboxylate and bipyridine ligands. Inorganic Chemistry 55 (13):6496–503. doi:10.1021/acs.inorgchem.6b00571.
  • Ibrahim, M., R. Sabouni, and A. H. Ghaleb. 2016. Anti-cancer Drug Delivery Using Metal Organic Frameworks (MOFs). Current Medicinal Chemistry 24 (2):193–214. doi:10.2174/09298673236661609261.
  • Lawson, H. D., S. P. Walton, and C. Chan. 2021. Metal–Organic Frameworks for Drug Delivery: A Design Perspective. ACS Applied Materials & Interfaces 13 (6):7004–20. doi:10.1021/acsami.1c01089.
  • Lee, J., O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, and J. T. Hupp. 2009. Metal–organic framework materials as catalysts. Chemical Society Reviews 38 (5):1450–59. doi:10.1039/B807080F.
  • Li, J., R. J. Kuppler, and H. Zhou. 2009. Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews 38 (5):1477–504. doi:10.1039/B802426J.
  • Li, J., J. Sculley, and H. Zhou. 2012. Metal–organic frameworks for separations. Chemical Reviews 112 (2):869–932. doi:10.1021/cr200190s.
  • Li, S., Y. Wang, Q. Cai, X. Zhao, J. Zhang, S. Zhang, and S. Pang. 2013. 3D energetic metal–organic frameworks: Synthesis and properties of high energy materials. Angewandte Chemie International Edition 52 (52):14031–35. doi:10.1002/anie.201307118.
  • Liang, L., H. Huang, K. Wang, C. Bian, J. Song, L. Ling, F. Zhao, and Z. Zhou. 2012. Oxy-bridged bis (1H-tetrazol-5-yl) furazan and its energetic salts paired with nitrogen-rich cations: Highly thermally stable energetic materials with low sensitivity. Journal of Materials Chemistry 22 (41):21954–64. doi:10.1039/C2JM33873D.
  • Liang, L., K. Wang, C. Bian, L. Ling, and Z. Zhou. 2013. 4-Nitro-3-(5-tetrazole) furoxan and Its Salts: Synthesis, Characterization, and Energetic Properties. Chemistry-A European Journal 19 (44):14902–10. doi:10.1002/chem.201301042.
  • Liu, J., Y. Chen, J. Liu, V. Vieru, L. Ungur, J. Jia, L. F. Chibotaru, Y. Lan, W. Wernsdorfer, S. Gao, and X. Chen. 2016. A stable pentagonal bipyramidal Dy (III) single-ion magnet with a record magnetization reversal barrier over 1000 K. Journal of the American Chemical Society 138 (16):5441–50. doi:10.1021/jacs.6b02638.
  • Liu, Y., J. Zhang, F. Xu, L. Sun, T. Zhang, W. You, Y. Zhao, J. Zeng, Z. Cao, and D. Yang. 2008. Lithium-based 3D coordination polymer with hydrophilic structure for sensing of solvent molecules. Crystal Growth and Design 8 (9):3127–29. doi:10.1021/cg701173x.
  • Ma, X., C. Cai, W. Sun, W. Song, Y. Ma, X. Liu, G. Xie, S. Chen, and S. Gao. 2019. Enhancing energetic performance of multinuclear Ag (I)-cluster MOF-based high-energy-density materials by thermal dehydration. ACS Applied Materials & Interfaces 11 (9):9233–38. doi:10.1021/acsami.9b00834.
  • McDonald, K. A., S. Seth, and A. J. Matzger. 2015. Coordination polymers with high energy density: An emerging class of explosives. Crystal Growth & Design 15 (12):5963–72. doi:10.1021/acs.cgd.5b01436.
  • NATO standardization agreement (STANAG) on explosive, friction sensitivity tests, no. 4487, 1st ed., August 22, 2002.
  • NATO standardization agreement (STANAG) on explosives, impact-sensitivity tests, no. 4489. 1st ed. September 17, 1999.
  • Pagoria, P. F., G. S. Lee, A. R. Mitchell, and R. D. Schmidt. 2002. A review of energetic materials synthesis. Thermochimica Acta 384 (1–2):187–204. doi:10.1016/S0040-6031(01)00805-X.
  • Qi, C., S. Li, Y. Li, Y. Wang, X. Chen, and S. Pang. 2011. A novel stable high-nitrogen energetic material: 4, 4′-azobis (1,2, 4-triazole). Journal of Materials Chemistry 21 (9):3221–25. doi:10.1039/C0JM02970J.
  • Qu, X., S. Zhang, B. Wang, Q. Yang, J. Han, Q. Wei, G. Xie, and S. Chen. 2016. An Ag (I) energetic metal-organic framework assembled with the energetic combination of furazan and tetrazole: Synthesis, structure and energetic performance. Dalton Transactions 45 (16):6968–73. doi:10.1039/C6DT00218H.
  • Sheldrick, G. M. 1998. Bruker Analytical X-ray Instruments. Madison, WI: Inc.
  • Sheremetev, A. B. 1995. Chemistry of furazans fused to five-membered rings. Journal of Heterocyclic Chemistry 32 (2):371–85. doi:10.1002/jhet.5570320201.
  • Singh, R. P., R. D. Verma, D. T. Meshri, and J. M. Shreeve. 2006. Energetic nitrogen-rich salts and ionic liquids. Angewandte Chemie International Edition 45 (22):3584–601. doi:10.1002/anie.200504236.
  • Stoner, J. C. E., B. S. Haggerty, A. L. Rheingold, and T. B. Brill. 1992. Thermal decomposition of energetic materials. 55. Metal Complexes of Diamioglyoxime as Potential Burn Rate Modifiers in composite propellants. Propellants, Explosives, Pyrotechnics 17 (2):82–87. doi:10.1002/prep.19920170207.
  • Stoner, J. C. E., A. L. Rheingold, and T. B. Brill. 1991a. Thermal decomposition of energetic materials. 48. Structures and decomposition mechanisms of copper (II) complexes of furazans (1, 2, 5-oxadiazoles). Inorganic Chemistry 30 (3):360–64. doi:10.1021/ic00003a003.
  • Stoner, J. C. E., A. L. Rheingold, and T. B. Brill. 1991b. Thermal decomposition of energetic materials 46. The formation of melamine-like cyclic azines as a mechanism for ballistic modification of composite propellants by DCD, DAG, and DAF. Combustion and Flame 83 (3–4):302–08. doi:10.1016/0010-2180(91)90077-O.
  • Suh, M. P., H. J. Park, T. K. Prasad, and D. W. Lim. 2012. Hydrogen storage in metal–organic frameworks. Chemical Reviews 112 (2):782–835. doi:10.1021/cr200274s.
  • Sumida, K., D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T. H. Bae, and J. R. Long. 2012. Carbon dioxide capture in metal–organic frameworks. Chemical Reviews 112 (2):724–81. doi:10.1021/cr2003272.
  • Sun, C., C. Qin, X. Wang, and Z. Su. 2013. Metal-organic frameworks as potential drug delivery systems. Expert Opinion on Drug Delivery 10 (1):89–101. doi:10.1517/17425247.2013.741583.
  • Tan, H., B. Liu, and Y. Chen. 2012. Lanthanide coordination polymer nanoparticles for sensing of mercury (II) by photoinduced electron transfer. ACS nano 6 (12):10505–11. doi:10.1021/nn304469j.
  • Tang, Y., X. Wang, T. Zhou, and R. Xiong. 2006. A novel 2D manganese (II) coordination polymer exhibiting ferromagnetic interaction. Crystal Growth & Design 6 (1):11–13. doi:10.1021/cg050222e.
  • Thottempudi, V., F. Forohor, and D. A. Parrish. 2012. Tris (triazolo) benzene and its derivatives: High‐density energetic materials. Angewandte Chemie International Edition 51 (39):9881–85. doi:10.1002/anie.201205134.
  • Thottempudi, V., P. Yin, J. Zhang, D. A. Parrish, and J. M. Shreeve. 2014. 1, 2, 3-Triazolo [4,5,-e] furazano [3,4,-b] pyrazine 6-Oxide-A Fused Heterocycle with a Roving Hydrogen Forms a New Class of Insensitive Energetic Materials]. Chemistry-A European Journal 20 (2):542–48. doi:10.1002/chem.201303469.
  • Wang, R., Y. Guo, Z. Zeng, B. Twamley, and J. M. Shreeve. 2009. Furazan-Functionalized Tetrazolate-Based Salts: A New Family of Insensitive Energetic Materials. Chemistry-A European Journal 15 (11):2625–34. doi:10.1002/chem.200802160.
  • Wu, B., Y. Bi, F. Li, L. Yang, Z. Zhou, J. Zhang, and T. Zhang. 2014. A Novel Stable High‐Nitrogen Energetic Compound: Copper (II) 1, 2–Diaminopropane Azide. Zeitschrift für anorganische und allgemeine Chemie 640 (1):224–28. doi:10.1002/zaac.201300286.
  • Xie, Z., L. Ma, K. E. deKrafft, A. Jin, and W. Lin. 2010. Porous phosphorescent coordination polymers for oxygen sensing. Journal of the American Chemical Society 132 (3):922–23. doi:10.1021/ja909629f.
  • Yoon, M., R. Srirambalaji, and K. Kim. 2012. Homochiral metal–organic frameworks for asymmetric heterogeneous catalysis. Chemical Reviews 112 (2):1196–231. doi:10.1021/cr2003147.
  • Zhang, S., Q. Yang, X. Liu, X. Qu, and S. Gao. 2016. High-energy metal–organic frameworks (HE-MOFs): Synthesis, structure and energetic performance. Coordination Chemistry Reviews 307:292–312. doi:10.1016/j.ccr.2015.08.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.