298
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Enhanced combustion behavior of TKX-50/B/NC composites via electrospray

, , , , &

References

  • Abraham, B. M., V. D. Ghule, and G. Vaitheeswaran. 2018. A comparative study of the structure, stability and energetic performance of 5,5’-bitetrazole-1,1’-diolate based energetic ionic salts: Future high energy density materials. Physical Chemistry Chemical Physics 20 (47):29693–707. doi:10.1039/c8cp06635c.
  • Baek, J., Y. Jiang, A. R. Demko, A. R. J. Thomas, L. Vallez, D. Ka, Y. Xia, and X. L. Zheng. 2022. Effect of Fluoroalkylsilane Surface Functionalization on Boron Combustion. ACS Applied Materials & Interfaces 14 (17):20190–96. doi:10.1021/acsami.2c00347.
  • Cheng, L. A., H. B. Yang, Y. A. Yang, Y. A. Li, Y. A. Meng, and Y. A. Li. 2020. Preparation of B/Nitrocellulose/Fe particles and their effect on the performance of an ammonium perchlorate propellant. Combustion and Flame 211:456–64. doi:10.1016/j.combustflame.2019.10.017.
  • Chintersingh, K. L., M. Schoenitz, and E. L. Dreizin. 2016. Oxidation kinetics and combustion of boron particles with modified surface. Combustion and Flame 173:288–95. doi:10.1016/j.combustflame.2016.08.027.
  • Fischer, N., D. Fischer, T. M. Klapötke, D. G. Piercey, and J. Stierstorfer. 2012. Pushing the limits of energetic materials: The synthesis and characterization of dihydroxylammonium 5,5’-bistetrazole-1,1’-diolate. Journal of Materials Chemistry 22 (38):20418–22. doi:10.1039/C2JM33646D.
  • Gottfried, J. L., T. M. Klapötke, and T. G. Witkowski. 2017. Estimated detonation velocities for TKX-50, MAD-X1, BDNAPM, BTNPM, TKX-55, and DAAF using the laser-induced air shock from energetic materials technique. Propellants, Explosives, Pyrotechnics 42 (4):353–59. doi:10.1002/prep.201600257.
  • Guerieri, P. M., J. B. Delisio, and M. R. Zachariah. 2017. Nanoaluminum/Nitrocellulose microparticle additive for burn enhancement of liquid fuels. Combustion and Flame 176:220–28. doi:10.1016/j.combustflame.2016.10.011.
  • Hedman, T. D., A. R. Demko, and J. Kalman. 2018. Enhanced ignition of milled boron-polytetrafluoroethylene mixtures. Combustion and Flame 198:112–19. doi:10.1016/j.combustflame.2018.08.020.
  • Huang, H. F., Y. M. Shi, and J. Yang. 2015. Thermal characterization of the promising energetic material TKX-50. Journal of Thermal Analysis and Calorimetry 121 (2):705–09. doi:10.1007/s10973-015-4472-9.
  • Huang, C., Z. J. Yang, Y. C. Li, B. H. Zheng, Q. L. Yan, L. F. Guan, G. Luo, S. B. Li, and F. D. Nie. 2020. Incorporation of high explosives into nano-aluminum based microspheres to improve reactivity. Chemical Engineering Journal 383:123110. doi:10.1016/j.cej.2019.123110.
  • Klapötke, T. M., S. Cudziło, and W. A. Trzciński. 2022. An answer to the question about the energetic performance of TKX-50. Propellants, Explosives, Pyrotechnics e202100358(1)
  • Li, Y., H. Yang, Y. Hong, Y. Yang, Y. Cheng, and H. Chen. 2017. Electrospun nanofiber-based nanoboron/nitrocellulose composite and their reactive properties. Journal of Thermal Analysis and Calorimetry 130 (2):1063–68. doi:10.1007/s10973-017-6607-7.
  • Liang, D. L., J. Z. Liu, J. W. Xiao, J. F. Xi, Y. Wang, and J. H. Zhou. 2015. Effect of metal additives on the composition and combustion characteristics of primary combustion products of B-based propellants. Journal of Thermal Analysis and Calorimetry 122 (1):497–508. doi:10.1007/s10973-015-4750-6.
  • Liang, D. L., J. Z. Liu, B. H. Chen, J. H. Zhou, and K. F. Cen. 2016. Improvement in energy release properties of boron-based propellant by oxidant coating. Thermochimica Acta 638:58–68. doi:10.1016/j.tca.2016.06.017.
  • Liang, D., J. Liu, H. Li, Y. Zhou, and J. H. Zhou. 2017. Improving effect of boron carbide on the combustion and thermal oxidation characteristics of amorphous boron. Journal of Thermal Analysis and Calorimetry 128 (3):1771–82. doi:10.1007/s10973-016-5989-2.
  • Liu, T. K., S. P. Luh, and H. C. Perng. 2010. Effect of boron particles surface coating on combustion of solid propellants rockets. Propellants, Explosives, Pyrotechnics 16 (4):156–66. doi:10.1002/prep.19910160403.
  • Liu, P. J., L. L. Liu, and G. Q. He. 2016. Effect of solid oxidizers on the thermal oxidation and combustion performance of amorphous boron. Journal of Thermal Analysis and Calorimetry 124 (3):1587–93. doi:10.1007/s10973-016-5252-x.
  • Macek, A., and J. M. Semple. 1969. Combustion of boron particles at atmospheric pressure. Combustion Science and Technology 1 (3):181–91. doi:10.1080/00102206908952199.
  • Netzer, D., A. Gany, A. Karadimitris, and I. C. Scott. 1991. Regression and combustion characteristics of boron containing fuels for solid fuel ramjets. Journal of Propulsion 7 (3):341–47. doi:10.2514/3.23332.
  • Pace, K. K., T. A. Jarymowycz, and V. Yang. 1993. Effect of magnesium-coated boron particles on burning characteristics of fuels in high-speed crossflows. International Journal of Energetic Materials and Chemical Propulsion 2 (1–6):332–46. doi:10.1615/IntJEnergeticMaterialsChemProp.v2.i1-6.180.
  • Trowbridge, J. C., and J. D. Breazeale Coating of boron particles [ P].USP 4877649,1989 October 31.
  • Van Devener, B., J. P. L. Perez, and S. L. Anderson. 2009. Air-stable, unoxidized, hydrocarbon-dispersible boron nanoparticles. Journal of Materials Research 24 (11):3462–64. doi:10.1557/JMR.2009.0412.
  • Wang, H., G. Jian, G. C. Egan, and M. R. Zachariah. 2014. Assembly and reactive properties of Al/CuO based nanothermite microparticles. Combustion and Flame 161 (8):2203–08. doi:10.1016/j.combustflame.2014.02.003.
  • Wang, S., M. Schoenitz, and E. L. Dreizin. 2016. Combustion of boron and boron-containing reactive composites in laminar and turbulent air flows. Combustion Science and Technology 189 (4–6):683–97. doi:10.1080/00102202.2016.1246441.
  • Young, G., C. W. Roberts, and C. A. Stoltz. 2015. Ignition and combustion enhancement of boron with polytetrafluoroethylene. Journal of Propulsion & Power 31 (1):386–92. doi:10.2514/1.B35390.
  • Yu, Y. H., S. S. Chen, X. Li, J. P. Zhu, H. Liang, X. X. Zhang, and Q. H. Shu. 2016. Molecular dynamics simulations for 5,5′-bistetrazole-1,1′-diolate (TKX-50) and its PBXs. RSC Advances 6 (24):20034–41. doi:10.1039/c5ra27912g.
  • Zhao, T. X., J. J. Tian, L. Li, G. J. Fan, and M. Huang. 2014. Up-sizing 50 grams-scale synthesis technology of dihydroxylammonium-5,5’-bistetrazole-l,1’-diolate(TKX-50). Chinese Journal of Energetic Materials 22 (6):744–47. doi:10.11943/j.1006-9941.2014.06.006.
  • Zhao, Y., W. Xie, X. Qi, Y. Liu, and W. Zhang. 2019. Comparison of the interfacial bonding interaction between GAP matrix and ionic/non-ionic explosive: Computation simulation and experimental study. Applied Surface Science 497:1–7. doi:10.1016/j.apsusc.2019.143813.
  • Zhao, W. J., X. Z. Wang, and H. Y. Wang. 2020. Titanium enhanced ignition and combustion of Al/I2O5 mesoparticle composites. Combustion and Flame 212:245–51. doi:10.1016/j.combustflame.2019.04.049.
  • Zhao, W. J., Q. J. Jiao, and P. W. Chen. 2022. Synergetic energetic kinetics of Mg-Zn alloys and pyrotechnics. Combustion and Flame 240:112000. doi:10.1016/j.combustflame.2022.112000.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.