3,830
Views
137
CrossRef citations to date
0
Altmetric
Special Issue Articles

Dewatering and Drying Methods for Microalgae

, &

REFERENCES

  • Jana, P.K.; Saha, I. Correlation of green house molecules with global and surface temperature and its effect on environment. Indian Journal of Physics 2011, 85(5), 667–682.
  • Lam, M.K.; Lee, K.T.; Mohamed, A.R. Current status and challenges on microalgae-based carbon capture. International Journal of Greenhouse Gas Control 2012, 10, 456–469.
  • Koberg, M.; Cohen, M.; Ben-Amotz, A.; Gedanken, A. Bio-diesel production directly from the microalgae biomass of Nannochloropsis by microwave and ultrasound radiation. Bioresource Technology 2011, 102, 4265–4269.
  • Rubin, E.S.; Mantripragada, H.; Marks, A.; Versteeg, P.; Kitchin, J. The outlook for improved carbon capture technology. Progress in Energy and Combustion Science 2012, 38, 630–671.
  • Chisti, Y. Biodiesel from microalgae. Biotechnology Advances 2007, 25(3), 294–306.
  • Metting, F.B. Biodiversity and application of microalgae. Journal of Industrial Microbiology and Biotechnology 1996, 17(5–6), 477–489.
  • Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial applications of microalgae. Journal of Bioscience and Bioengineering 2006, 101(2), 87–96.
  • Schenk, P.M.; Thomas-Hall, S.R.; Stephens, E.; Marx, U.C.; Mussgnug, J.H.; Posten, C.; Kruse, O.; Hankamer, B. Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Research 2008, 1(1), 20–43.
  • Scott, S.A.; Davey, M.P.; Dennis, J.S.; Horst, I.; Howe, C.J.; Lea-Smith, D.J.; Smith, A.G. Biodiesel from algae: Challenges and prospects. Current Opinion in Biotechnology 2010, 21, 277–286.
  • Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial applications of microalgae. Journal of Bioscience and Bioengineering 2006, 101(2), 87–96.
  • Khan, S.; Rashmi; Hussain, M.Z.; Prasad, S.; Banerjee, U.C. Prospects of biodiesel production from microalgae in India. Renewable and Sustainable Energy Reviews 2009, 13, 2361–2372.
  • Li, Y.; Horsman, M.; Wu, N.; Lan, C.Q.; Dubois-Calero, N. Biofuels from microalgae. Biotechnology Progress 2008, 24, 815–820.
  • Shelef, G.; Sukenik, A.; Green, M. Microalgae harvesting and processing: A literature review. NREL Report No. STR-231-2396, Technion Research and Development Foundation, 1984.
  • Park, J.B.K.; Craggs, R.J.; Shilton, A.N. Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology 2011, 102, 35–42.
  • Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews 2010, 14(1), 217–232.
  • Uduman, N.; Qi, Y.; Danquah, M.K.; Forde, G.M.; Hoadley, A. Dewatering of microalgal cultures: A major bottleneck to algae-based fuels. Journal of Renewable and Sustainable Energy 2010, 2, 012701.
  • Milledge, J.J.; Heaven, S. A review of the harvesting of micro-algae for biofuel production. Reviews in Environmental Science and Biotechnology 2013, 12, 165–178.
  • Brennan, L.; Owende, P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews 2010, 14, 557–577.
  • Bernhardt, H.; Clasen, J. Flocculation of micro-organisms. Journal of Water Supply: Research and Technology – Aqua 1991, 40, 76–87.
  • Chen, C.Y.; Yeh, K.L.; Aisyah, R.; Lee, D.J.; Chang, J.S. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology 2011, 102, 71–81.
  • Harun, R.; Singh, M.; Forde, G.M.; Danquah, M.K. Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable and Sustainable Energy Reviews 2010, 14, 1037–1047.
  • Lee, D.J.; Chen, G.Y.; Chang, Y.R.; Mujumdar, A.S.; Chang, J.S. Cyclic filtration-cleaning of Chlorella vulgaris using surface-modified hydrophilic polytetrafluoroethylene membrane with polyaluminum chloride as coagulant. Drying Technology 2013, 31(2), 207–212.
  • Şirin, S.; Trobajo, R.; Ibanez, C.; Salvadó, J. Harvesting the microalgae Phaeodactylum tricornutum with polyaluminum chloride, aluminium sulphate, chitosan and alkalinity-induced flocculation. Journal of Applied Phycology 2012, 24, 1067–1080.
  • Lee, A.K.; Lewis, D.M.; Ashman, P.J. Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel. Journal of Applied Phycology 2009, 21, 559–567.
  • Banerjee, C.; Gupta, P.; Mishra, S.; Sen, G.; Shukla, P.; Bandopadhyay, R. Study of polyacrylamide grafted starch based algal flocculation towards applications in algal biomass harvesting. International Journal of Biological Macromolecules 2012, 51, 456–461.
  • Pushparaj, B.; Pelosi, E.; Torzillo, G.; Materassi, R. Microbial biomass recovery using a synthetic cationic polymer. Bioresource Technology 1993, 43, 59–62.
  • Eldridge, R.J.; Hill, D.R.A.; Gladman, B.R. A comparative study of the coagulation behavior of marine microalgae. Journal of Applied Phycology 2012, 24, 1667–1679.
  • López-León, T.; Carvalho, E.L.S.; Seijo, B.; Ortega-Vinuesa, J.L.; Bastos-González, D. Physicochemical characterization of chitosan nanoparticles: Electrokinetic and stability behavior. Journal of Colloid and Interface Science 2005, 283, 344–351.
  • Chen, G.; Zhao, L.; Qi, Y.; Cui, Y.L. Chitosan and its derivatives applied in harvesting microalgae for biodiesel production: An outlook. Journal of Nanomaterials 2014, Article ID 217537. http://dx.doi.org/10.1155/2014/217537
  • Ahmad, A.L.; Mat Yasin, N.H.; Derek, C.J.C., Lim, J.K. Optimization of microalgae coagulation process using chitosan. Chemical Engineering Journal 2011, 173, 879–882.
  • Chang, Y.R.; Lee, D.J. Coagulation-membrane filtration of Chlorella vulgaris at different growth phases. Drying Technology 2012, 30, 1317–1322.
  • Chen, Y.M.; Liu, J.C.; Ju, Y.H. Flotation removal of algae from water. Colloids and Surfaces B: Biointerfaces 1998, 12, 49–55.
  • Chen, L.; Wang, C.; Wang, W.; Wei, J. Optimal conditions of different flocculation methods for harvesting Scenedesmus sp. cultivated in an open-pond system. Bioresource Technology 2013, 133, 9–15.
  • Divakaran, R.; Pillai, V.N.S. Flocculation of algae using chitosan. Journal of Applied Phycology 2002, 14, 419–422.
  • Farid, M.S.; Shariati, A.; Badakhshan, A.; Anvaripour, B. Using nano-chitosan for harvesting microalga Nannochloropsis sp. Bioresource Technology 2013, 131, 555–559.
  • Lee, A.K.; Lewis, D.M.; Ashman, P.J. Disruption of microalgal cells for the extraction of lipids for biofuels: Processes and specific energy requirements. Biomass and Bioenergy 2012, 46, 89–101.
  • Morales, J.; de la Noiie, J.; Picard, G. Harvesting marine microalgae species by chitosan flocculation. Aquacultural Engineering 1985, 4, 257–270.
  • Rashid, N.; Rehman, S.U.; Han, J.I. Rapid harvesting of freshwater microalgae using chitosan. Process Biochemistry 2013, 48, 1107–1110.
  • Rashid, N.; Rehman, M.S.U.; Han, J.I. Use of chitosan acid solutions to improve separation efficiency for harvesting of the microalga Chlorella vulgaris. Chemical Engineering Journal 2013, 226, 238–242.
  • Tran, D.T.; Le, B.H.; Lee, D.J.; Chen, C.L.; Wang, H.Y.; Chang, J.S. Microalgae harvesting and subsequent biodiesel conversion. Bioresource Technology 2013, 140, 179–186.
  • Toh, P.Y.; Ng, B.W.; Chong, C.H.; Ahmad, A.L.; Yang, J.W.; Derek, C.J.C.; Lim, J.K. Magnetophoretic separation of microalgae: The role of nanoparticles and polymer binder in harvesting biofuel. RSC Advances 2014, 4, 4114–4121.
  • Xu, Y.; Purton, S.; Baganz, F. Chitosan flocculation to aid the harvesting of the microalga Chlorella sorokiniana. Bioresource Technology 2013, 129, 296–301.
  • Vandamme, D.; Foubert, I.; Meesschaert, B.; Muylaert, K. Flocculation of microalgae using cationic starch. Journal of Applied Phycology 2010, 22(4), 525–530.
  • Anthony, R.J.; Sims, R.C. Optimization of cationic amino starch synthesis using biogenic amines. Carbohydrate Polymers 2013, 98(2), 1409–1415.
  • Anthony, R.J.; Ellis, J.T.; Sathish, A.; Rahman, A.; Miller, C.D.; Sims, R.C. Effect of coagulant/flocculants on bioproducts from microalgae. Bioresource Technology 2013, 149, 65–70.
  • Vandamme, D.; Muylaert, K.; Fraeye, I.; Foubert, I. Floc characteristics of Chlorella vulgaris: Influence of flocculation mode and presence of organic matter. Bioresource Technology 2014, 151, 383–387.
  • Gerde, J.A.; Yao, L.; Lio, J.Y.; Wen, Z.; Wang, T. Microalgae flocculation: Impact of flocculant type, algae species and cell concentration. Algal Research 2014, 3, 30–35.
  • Rakesh, S.; Saxena, S.; Dhar, D.W.; Prasanna, R.; Saxena, A.K. Comparative evaluation of inorganic and organic amendments for their flocculation efficiency of selected microalgae. Journal of Applied Phycology 2014, 26(1), 399–406.
  • Edzwald, J.K. Algae, bubbles, coagulants, and dissolved air flotation. Water Science and Technology 1993, 27(10), 67–81.
  • Collet, P.; Hélias, A.; Lardon, L.; Ras, M.; Goy, R.A.; Steyer, J.P. Life-cycle assessment of microalgae culture coupled to biogas production. Bioresource Technology 2011, 102(1), 207–214.
  • Smayda, T.J. The suspension and sinking of phytoplankton in the sea. In Oceanography and Marine Biology Annual Review, vol. 8; Barnes, H. Ed.; George Allen & Unwin: London, 1970, 353–414.
  • Choi, S.K.; Lee, J.Y.; Kwon, D.Y.; Cho, K.J. Settling characteristics of problem algae in the water treatment process. Water Science and Technology 2006, 53(7), 113–119.
  • Vandamme, D.; Foubert, I.; Muylaert, K. Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends in Biotechnology 2013, 31(4), 233–239.
  • Cheng, W.P.; Chen, W.Y.; Yu, R.F. PACl coagulation for the solid–liquid separation of highly concentrated algae suspensions. Desalination and Water Treatment 2010, 16, 290–297.
  • Xu, L.; Wang, F.; Li, H.Z.; Hu, Z.M.; Guo, C.; Liu, C.Z. Development of an efficient electroflocculation technology integrated with dispersed-air flotation for harvesting microalgae. Journal of Chemical Technology and Biotechnology 2010, 85, 1504–1507.
  • Ofir, E.; Oren, Y.; Adin, A. Comparing pretreatment by iron of electro-flocculation and chemical flocculation. Desalination 2007, 204, 87–93.
  • Dassey, A.J.; Theegala, C.S. Reducing electrocoagulation harvesting costs for practical microalgal biodiesel production. Environmental Technology 2014, 35(6), 691–697.
  • Vandamme, D.; Pontes, S.C.V.; Goiris, K.; Foubert, I.; Pinoy, L.J.J.; Muylaert, K. Evaluation of electro-coagulation–flocculation for harvesting marine and freshwater microalgae. Biotechnology and Bioengineering 2011, 108(10), 2320–2329.
  • Lee, A.K.; Lewis, D.M.; Peter, J.; Ashman, P.J. Harvesting of marine microalgae by electroflocculation: The energetics, plant design, and economics. Applied Energy 2013, 108, 45–53.
  • Kim, D.G.; La, H.J.; Ahn, C.Y.; Park, Y.H.; Oh, H.M. Harvest of Scenedesmus sp. with bioflocculant and reuse of culture medium for subsequent high-density cultures. Bioresource Technology 2011, 102, 3163–3168.
  • Oh, H.M.; Lee, S.J.; Park, M.H.; Kim, H.S.; Kim, H.C.; Yoon, J.H.; Kwon, G.S.; Yoon, B.D. Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp. AM49. Biotechnology Letters 2001, 23, 1229–1234.
  • Wan, C.; Zhao, X.Q.; Guo, S.L.; Asraful Alam, M.; Bai, F.W. Bioflocculant production from Solibacillus silvestris W01 and its application in cost-effective harvest of marine microalga Nannochloropsis oceanica by flocculation. Bioresource Technology 2013, 135, 207–212.
  • Salim, S.; Bosma, R.; Vermuë, M.H.; Wijffels, R.H. Harvesting of microalgae by bio-flocculation. Journal of Applied Phycology 2011, 23, 849–855.
  • Salim, S.; Vermuë, M.H.; Wijffels, R.H. Ratio between autoflocculating and target microalgae affects the energy-efficient harvesting by bio-flocculation. Bioresource Technology 2012, 118, 49–55.
  • Xie, S.; Sun, S.; Dai, S.Y.; Yuan, J.S. Efficient coagulation of microalgae in cultures with filamentous fungi. Algal Research 2013, 2, 28–33.
  • Zhang, J.; Hu, B. A novel method to harvest microalgae via co-culture of filamentous fungi to form cell pellets. Bioresource Technology 2012, 114, 529–535.
  • Zhou, W.; Cheng, Y.; Li, Y.; Wan, Y.; Liu, Y.; Lin, X.; Ruan, R. Novel fungal pelletization-assisted technology for algae harvesting and wastewater treatment. Applied Biochemistry and Biotechnology 2012, 167, 214–228.
  • Zhou, W.; Min, M.; Hu, B.; Ma, X.; Liu, Y.; Wang, Q.; Shi, J.; Chen, P.; Ruan, R. Filamentous fungi assisted bio-flocculation: A novel alternative technique for harvesting heterotrophic and autotrophic microalgal cells. Separation and Purification Technology 2013, 107, 158–165.
  • More, T.T.; Yadav, J.S.S.; Yan, S.; Tyagi, R.D. Surampalli, RY. Extracellular polymeric substances of bacteria and their potential environmental applications. Journal of Environmental Management 2014, 144, 1–25.
  • Alam, M.A.; Wan, C.; Guo, S.L.; Zhao, X.Q.; Huang, Z.Y.; Yang, Y.L.; Chang, J.S.; Bai, F.W. Characterization of the flocculating agent from the spontaneously flocculating microalga Chlorella vulgaris JSC-7. Journal of Bioscience and Bioengineering 2014, 118(1), 29–33.
  • Garg, S.; Li, Y.; Wang, L.; Schenk, P.M. Flotation of marine microalgae: Effect of algal hydrophobicity. Bioresource Technology 2012, 121, 471–474.
  • Molina Grima, E.; Belarbi, E.H.; Acién Fernándeza, F.G.; Robles Medina, A.; Chisti, Y. Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnology Advances 2003, 20(7–8), 491–515.
  • Danquah, M.K.; Ang, L.; Uduman, N.; Moheimani, N.; Fordea, G.M. Dewatering of microalgal culture for biodiesel production: Exploring polymer flocculation and tangential flow filtration. Journal of Chemical Technology and Biotechnology 2009, 84, 1078–1083.
  • Rossignol, N.; Vandanjon, L.; Jaouen, P.; Quéméneur, F. Membrane technology for the continuous separation microalgae/culture medium: Compared performances of cross-flow microfiltration and ultrafiltration. Aquacultural Engineering 1999, 20, 191–208.
  • Sun, X.; Wanga, C.; Tong, Y.; Wang, W.; Wei, J. A comparative study of microfiltration and ultrafiltration for algae harvesting. Algal Research 2013, 2, 437–444.
  • Hwang, T.; Park, S.J.; Oh, Y.K.; Rashid, N.; Han, J.I. Harvesting of Chlorella sp. KR-1 using a cross-flow membrane filtration system equipped with an anti-fouling membrane. Bioresource Technology 2013, 139, 379–382.
  • Rios, S.D.; Clavero, E.; Salvadó, J.; Farriol, X.; Torras, C. Dynamic microfiltration in microalgae harvesting for biodiesel production. Industrial & Engineering Chemistry Research 2011, 50(4), 2455–2460.
  • Ríos, S.D.; Salvadó, J.; Farriol, X.; Torras, C. Antifouling microfiltration strategies to harvest microalgae for biofuel. Bioresource Technology 2012, 119, 406–418.
  • Zhang, X.; Hua, Q.; Sommerfeld, M.; Puruhito, E.; Chen, Y. Harvesting algal biomass for biofuels using ultrafiltration membranes. Bioresource Technology 2010, 101, 5297–5304.
  • Rossi, N.; Petit, I.; Jaouen, P.; Legentilhomme, P.; Derouiniot, M. Harvesting of cyanobacterium Arthrospira platensis using inorganic filtration membranes. Separation Science and Technology 2005, 40, 3033–3050.
  • Milledge, J.J.; Heaven, S. A review of the harvesting of micro-algae for biofuel production. Reviews in Environmental Science and Biotechnology 2013, 12, 165–178.
  • Heasman, M.; Diemar, J.; O'Connor, W.; Sushames, T.; Foulkes, L. Development of extended shelf-life microalgae concentrates diets harvested by centrifugation for bivalves molluscs—a summary. Aquaculture Research 2000, 31, 637–659.
  • Milledge, J.J.; Heaven, S. Disc stack centrifugation separation and cell disruption of microalgae: A technical note. Environment and Natural Resources Research 2011, 12, 165–178.
  • Knuckey, R.M.; Brown, M.R.; Robert, R.; Frampton, D.M.F. Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquacultural Engineering 2006, 35, 300–313.
  • Christenson, L.; Sims, R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnology Advances 2011, 29, 686–702.
  • Dissa, A.O.; Desmorieux, H.; Savadogo, P.W.; Segda, B.G.; Koulidiati, J. Shrinkage, porosity and density behaviour during convective drying of Spirulina. Journal of Food Engineering 2010, 97, 410–418.
  • Oliveira, E.G.; Rosa, G.S.; Moraes, M.A.; Pinto, L.A.A. Characterization of thin layer drying of Spirulina platensis utilizing perpendicular air flow. Bioresource Technology 2009, 100, 1297–1303.
  • Prakash, J.; Pushparaj, B.; Carlozzi, P.; Torzillo, G.; Montaini, E.; Materassi, R. Microalgal biomass drying by a simple solar device. International Journal of Solar Energy 1997, 18(4), 303–311.
  • Balasubramanian, R.K.; Yen Doan, T.T.; Obbard, J.P. Factors affecting cellular lipid extraction from marine microalgae. Chemical Engineering Journal 2013, 215–216, 929–936.
  • Guldhe, A.; Singh, B.; Rawat, I.; Ramluckan, K.; Bux, F. Efficacy of drying and cell disruption techniques on lipid recovery from microalgae for biodiesel production. Fuel 2014, 128, 46–52.
  • Desmorieux, H.; Decaen, N. Convective drying of Spirulina in thin layer. Journal of Food Engineering 2005, 66, 497–503.
  • Oliveira, E.G.; Duarte, J.H.; Moraes, K.; Crexi, V.T. Pinto, L.A.A. Optimisation of Spirulina platensis convective drying: Evaluation of phycocyanin loss and lipid oxidation. International Journal of Food Science and Technology 2010, 45, 1572–1578.
  • Dissa, A.O.; Compaore, A.; Tiendrebeogo, E.; Koulidiati, J. An effective moisture diffusivity model deduced from experiment and numerical solution of mass transfer equations for a shrinkable drying slab of microalgae Spirulina. Drying Technology 2014, 32(10), 1231–1244.
  • Ryckebosch, E.; Muylaert, K.; Eeckhout, M.; Ruyssen, T.; Foubert, I. Influence of drying and storage on lipid and carotenoid stability of the microalga Phaeodactylum tricornutum. Journal of Agricultural and Food Chemistry 2011, 59, 11063–11069.
  • Desmorieux, H.; Hernandez, F. Biochemical and physical criteria of Spirulina after different drying processes. In Proceedings of the 14th International Drying Symposium (IDS), São Paulo City, Brazil, August 22–25, 2004, B, 900–907.
  • Lee, D.J.; Chen, G.Y.; Chang, Y.R.; Lee, K.R. Harvesting of chitosan coagulated Chlorella vulgaris using cyclic membrane filtration-cleaning. Journal of the Taiwan Institute of Chemical Engineers 2012, 43, 948–952.
  • Mahadevaswamy, M.; Venkataraman, L.V. Microbial load in mass cultures of green algae Scenedesmus acutus and its processed powder. Journal of Biosciences 1981, 3(4), 439–448.
  • Saleh, A.M.; Hussein, L.A.; Abdalla, F.E.; EI-Fouly, M.M.; Shaheen, A.B. The nutritional quality of drum-dried algae produced in open door mass culture. Zeitschrift für Ernährungswissenschaft 1985, 24, 256–263.
  • Gazor, H.R.; Mohsenimanesh, A. Modelling the drying kinetics of canola in fluidised bed dryer. Czech Journal of Food Sciences 2010, 28(6), 531–537.
  • Bauman, I.; Bobić, Z.; Đaković, Z.; Ukrainczyk, M. Time and speed of fruit drying on batch fluid-beds. Sādhanā 2005, 30(5), 687–698.
  • Leach, G.; Oliveira, G.; Morais, R. Production of a carotenoid-rich product by alginate entrapment and fluid-bed drying of Dunaliella salina. Journal of the Science of Food and Agriculture 1998, 76, 298–302.
  • Chatterjee, D.; Bhattacharjee, P. Supercritical carbon dioxide extraction of antioxidant rich fraction from Phormidium valderianum: Optimization of experimental process parameters. Algal Research 2014, 3, 49–54.
  • Chakdar, H.; Saha, S.; Pabbi, S. Chromatographic and spectroscopic characterization of phycocyanin and its subunits purified from Anabaena variabilis CCC421. Applied Biochemistry and Microbiology 2014, 50(1), 62–68.
  • Thangam, R.; Suresh, V.; Asenath Princy, W.; Rajkumar, M.; Senthilkumar, N.; Gunasekaran, P.; Rengasamy, R.; Anbazhagan, C.; Kaveri, K.; Kannan, S. C-Phycocyanin from Oscillatoria tenuis exhibited an antioxidant and in vitro antiproliferative activity through induction of apoptosis and G0/G1 cell cycle arrest. Food Chemistry 2013, 140(1–2), 262–272.
  • Sorensen, L.; Hantke, A.; Eriksen, N.T. Purification of the photosynthetic pigment C-phycocyanin from heterotrophic Galdieria sulphuraria. Journal of the Science of Food and Agriculture 2013, 93(12), 2933–2938.
  • Ahmed, F.; Fanning, K.; Netzel, M.; Turner, W.; Li, Y.; Schenk, P.M. Profiling of carotenoids and antioxidant capacity of microalgae from subtropical coastal and brackish waters. Food Chemistry 2014, 165, 300–306.
  • Singh, D.; Puri, M.; Wilkens, S.; Mathur, A.S.; Tuli, D.K.; Barrow, C.J. Characterization of a new zeaxanthin producing strain of Chlorella saccharophila isolated from New Zealand marine waters. Bioresource Technology 2013, 143, 308–314.
  • Wu, J.J.; Hong, S.E.; Wang, Y.C.; Hsu, S.L.; Chang, C.M.J. Microalgae cultivation and purification of carotenoids using supercritical anti-solvent recrystallization of CO2 +acetone solution. The Journal of Supercritical Fluids 2012, 66, 333–341.
  • Plaza, M.; Santoyo, S.; Jaime, L.; Avalo, B.; Cifuentes, A.; Reglero, G.; Reina, G.G.B.; Señoráns, F.J.; Ibáñez, E. Comprehensive characterization of the functional activities of pressurized liquid and ultrasound-assisted extracts from Chlorella vulgaris. Food Science and Technology 2012, 46(1), 245–253.
  • Soares, A.T.; Da Costa, D.C.; Silva, B.F.; Lopes, R.G.; Derner, R.B.; Filho, N.R.A. Comparative analysis of the fatty acid composition of microalgae obtained by different oil extraction methods and direct biomass transesterification. BioEnergy Research 2014, 7(3), 1035–1044.
  • Solana, M.; Rizza, C.S.; Bertucco, A. Exploiting microalgae as a source of essential fatty acids by supercritical fluid extraction of lipids: Comparison between Scenedesmus obliquus, Chlorella protothecoides and Nannochloropsis salina. Journal of Supercritical Fluids 2014, 92, 311–318.
  • Li, Y.; Ghasemi Naghdi, F.; Garg, S.; Adarme-Vega, T.C.; Thurecht, K.J.; Ghafor, W.A.; Tannock, S.; Schenk, P.M. A comparative study: The impact of different lipid extraction methods on current microalgal lipid research. Microbial Cell Factories 2014, 13–14.
  • Mansour, M.P. Reversed-phase high-performance liquid chromatography purification of methyl esters of C16–C28 polyunsaturated fatty acids in microalgae, including octacosaoctaenoic acid [28:8(n-3)]. Journal of Chromatography A 2005, 1097(1–2), 54–58.
  • Belarbi, E.H.; Molina, E.; Chisti, Y. A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. [RETRACTED]. Process Biochemistry 2000, 35(9), 951–969.
  • Cao, H.; Zhang, Z.; Wu, X.; Miao, X. Direct biodiesel production from wet microalgae biomass of Chlorella pyrenoidosa through in situ transesterification. BioMed Research International 2013. DOI: 10.1155/2013/930686.
  • Kumara, V.; Muthuraj, M.; Palabhanvi, B.; Ghoshal, A.K.; Das, D. Evaluation and optimization of two stage sequential in situ transesterification process for fatty acid methyl ester quantification from microalgae. Renewable Energy 2014, 68, 560–569.
  • Tran, D.-T.; Yeh, K.-L.; Chen, C.-L.; Chang, J.-S. Enzymatic transesterification of microalgal oil from Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized Burkholderia lipase. Bioresource Technology 2012, 108, 119–127.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.