Publication Cover
Drying Technology
An International Journal
Volume 35, 2017 - Issue 3
1,006
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

CFD modeling of a pilot-scale countercurrent spray drying tower for the manufacture of detergent powder

, , , , , & show all

References

  • Masters, K. Spray Drying: An introduction to Principles, Operational Practice and Applications; Leonard Hill Books: London, 1972.
  • Marshall, W.R.; Seltzer, E. Principles of spray drying: Part II – Elements of spray-dryer design. Chemical Engineering Progress 1950, 46, 575–584.
  • Bahu, E.R. Spray drying – Maturity or opportunities? Drying 1992, Part - A, 74–91.
  • Masters, K. Scale-up of spray dryers. Drying Technology 1995, 121(2), 235–257.
  • Langrish, T.A.; Fletcher, D.F. Prospects for the modelling and design of spray dryers in the 21st century. Drying Technology 2003, 21(2), 197–215.
  • Xin, H.L.; Mujumdar, A.S. Spray drying and its application in food processing. In Innovation in Food Engineering; CRC Press: Boca Raton, FL, 2009; 303–329.
  • Livesley, D.M.; Oakley, D.E.; Gillespie, R.F.; Ranpuria, C.K.; Taylor, T.; Wood, W.; Yeoman, M.L. Development and validation of a computational model for spray-gas mixing in spray dryers. In Drying; Mujumdar, A.S. Ed.; Hemisphere Publishing Corp: New York, 1992, pp. 407–416.
  • Oakley, D.E.; Bahu, R.E. Computational modelling of spray dryers. European symposium on Computer Aided Process Engineering-2. Computers & Chemical Engineering 1993, 17, S493–S498.
  • Langrish, T.A.G.; Zbicinski, I. The effects of air inlet geometry and spray cone angle on the wall deposition rate in spray dryers. Trans IChemE 1994, 72(A), 420–430.
  • Zbicinski, I. Development and experimental verification of momentum, heat and mass transfer model in spray drying. The Chemical Engineering Journal 1995, 58, 123–133.
  • Kieviet, F.G. Modelling quality in spray drying. Ph.D. thesis. Eindhoven University of Technology, 1997.
  • Southwell, D.B.; Langrish, T.A.G.; Fletcher, D.F. Process intensification in spray dryers by turbulence enhancement. Trans IChemE 1999, 77(A), 189–205.
  • Straatsma, J.; Houwelingen, G.V.; Steenbergen, A.E.; Jong, P.D. Spray drying of food products: 1. Simulation model. Journal of Food Engineering 1999, 42, 67–72.
  • Harvie, D.J.E.; Langrish, T.A.G.; Fletcher, D.F. A computational fluid dynamics study of a tall-form spray dryer. Trans IChemE 2002, 80, 163–175.
  • Huang, L.; Kumar, K.; Mujumdar, A.S. A parametric study of gas flow patterns and drying performance of co-current spray dryer: Results of a computational fluid dynamics study. Drying Technology 2003, 21(6), 957–978.
  • Huang, L.; Passos, M.L.; Kumar, K.; Mujumdar, A.S. A three-dimensional simulation of a spray dryer with a rotary atomizer. In Drying 2004 – Proceedings of the 14th International Drying Symposium (IDS 2004); A, 319–325.
  • Huang, L.; Kumar, K.; Mujumdar, A.S. Computational fluid dynamic simulation of droplet drying in a spray dryer. In Drying 2004 – Proceedings of the 14th International Drying Symposium (IDS 2004); A, 326–332.
  • Huang, L.X.; Kumar, K.; Mujumdar, A.S. A comparative study of a spray dryer with rotary disc atomizer and pressure nozzle using computational fluid dynamic simulations. Chemical Engineering and Processing: Process Intensification 2006, 45, 461–470.
  • Verdurmen, R.E.M.; Menn, P.; Ritzert, J.; Blei, S.; Nhumaio, G.C.S.; Sonne Sørensen, T.; Gunsing, M.; Straatsma, J.; Verschueren, M.; Sibeijn, M.; Schulte, G.; Fritsching, U.; Bauckhage, K.; Tropea, C.; Sommerfeld, M.; Watkins, P.; Yule, A.J.; and Schønfeldt, H. Simulation of agglomeration in spray drying installations: The EDECAD project. Drying Technology 2004, 22(6), 1403–1461.
  • Kota, K.; Langrish, T. Prediction of deposition patterns in a pilot-scale spray dryer using computational fluid dynamics (CFD) simulations. Chemical Product and Process Modeling 2007, 2(3), Article 26.
  • Anandharamakrishnan, C.; Gimbun, J.; Stapley, A.G.F.; Rilley, C.D. A study of particle histories during spray drying using computational fluid dynamic simulations. Drying Technology 2010, 28, 566–576.
  • Saleh, S.N. CFD simulations of a co-current spray dryer. World academy of Science, Engineering and Technology 2010, 62, 772–777.
  • Mezhericher, M.; Levy, A.; Borde, I. Droplet-droplet interactions in spray drying by using 2D computational fluid dynamics. Drying Technology 2008, 26, 265–282.
  • Mezhericher, M.; Levy, A.; Borde, I. Modeling of droplet drying in spray chambers using 2D and 3D computational fluid dynamics. Drying Technology 2009, 27, 359–370.
  • Mezhericher, M.; Levy, A.; Borde, I. Spray drying modelling based on advanced droplet drying kinetics. Chemical Engineering and Processing: Process Intensification 2010, 49, 1205–1213.
  • Mezhericher, M.; Levy, A.; Borde, I. Probabilistic hard-sphere model of binary particle–particle interactions in multiphase flow of spray dryers. International Journal of Multiphase Flow 2012, 43, 22–38.
  • Crowe, C.T. Modeling spray-air contact in spray-drying systems. Advances in Drying 1980, 1, 63–99.
  • Kuriakose, R.; Anandharamakrishnan, C. Computational fluid dynamics (CFD) applications in spray drying of food products. Trends in Food Science & Technology 2010, 21, 383–398.
  • Crowe, C.T. Droplet-gas interaction in counter-current spray dryers. Drying Technology 1983, 1, 35–56.
  • Zbicinski, I.; Zietara, R. CFD model of counter-current spray drying process. In Drying, São Paulo, Brazil, A, 2004; 169–176.
  • Wawrzyniak, P.; Podyma, M.; Zbicinski, I.; Bartczak, Z.; Polanczyk, A.; Rabaeva, J. Model of heat and mass transfer in an industrial counter-current spray-drying tower. Drying Technology 2012, 30, 1274–1282.
  • Wawrzyniak, P.; Jaskulski, M.; Zbicinski, I.; Podyma, M. Two phase CFD model of a counter-current spray drying process. In 19th International Drying Symposium (IDS 2014), France.
  • Jaskulski, M.; Wawrzyniak, P.; Zbicinski, I. CFD model of particle agglomeration in spray drying. Drying Technology 2015, 33, 1971–1980.
  • Zbicinski, I.; Piatkowski, M. Continuous and discrete phase behavior in counter-current spray drying process. Drying Technology 2009, 27, 1353–1362.
  • Sommerfeld, M. Validation of a stochastic Lagrangian modeling approach for inter-particle collisions in homogeneous isotropic turbulence. International Journal of Multiphase Flow 2001, 27, 1829–1858.
  • Ali, M. Numerical modelling of a counter-current spray drying tower. Ph.D thesis. Institute of Particle Science and Engineering, University of Leeds, UK, 2014.
  • Hecht, J.P. Personal Communication; Newcastle Technical Centre: UK, 2012.
  • Shir, C.C. A preliminary numerical study of atmospheric turbulent flows in the idealized planetary boundary layer. Journal of the Atmospheric Sciences 1973, 30, 1327–1339.
  • Launder, B.E.; Reece, G.J.; Rodi, W. Progress in the development of a Reynolds-stress turbulence closure. Journal of Fluid Mechanics 1975, 68(3), 537–566.
  • Cebeci, T.; Bradshaw, P. Momentum Transfer in Boundary Layers; McGraw-Hill: London, 1977.
  • Versteeg, H.K.; Malalasekera, W. An Introduction to Computational Fluid Dynamics, 2nd ed.; Pearson Education Ltd.: Harlow, England, 2007.
  • Fluent User’s guide. Ansys Inc. Available at: http://www.ansys.com (2009).
  • Viegas, J.R.; Rubesin, M.W.; Hortsman, C.C. On the use of wall functions as boundary conditions for two-dimensional separated compressible flows. Technical Report AIAA-85–0180 1985, AIAA, 23rd Aerospace Sciences Meeting, Reno, Nevada.
  • Morsi, S.A.; Alexander, A.J. An investigation of particle trajectories in two-phase flow systems. Journal of Fluid Mechanics 1972, 55(2), 193–208.
  • Hutchinson, P.; Hewitt, G.F.; Dukler, A.E. Deposition of liquid or solid dispersions from turbulent gas streams: A stochastic model. Chemical Engineering Science 1971, 26, 419–439.
  • Francia, V.; Martin, L.; Bayly, A.E.; Simmons, M.J.H. The role of wall deposition and re-entrainment in swirl spray dryers. AIChE Journal 2015, 61(6), 1804–1821.
  • Hassal, G.J. Wall build-up in spray dryers. Ph.D. thesis. University of Birmingham, UK, 2011.
  • Hecht, J.P.; King, C.J. Spray drying: Influence of developing drop morphology on drying rates and retention of volatile substances. 2: Modeling. Industrial and Engineering Chemistry Research 2000, 39, 1766–1774.
  • Ali, M.; Mahmud, T.; Heggs, P.J.; Ghadiri, M.; Djurdjevic, D.; Ahmadian, H.; Juan, L.M.; Amador, C.; Bayly, A. A one-dimensional plug-flow model of a counter-current spray drying tower. Chemical Engineering Research and Design 2014, 92, 826–841.
  • Ranz, W.E.; Marshall, W.R. Evaporation from drops. Chemical Engineering Progress 1952, 48, 141–146, 173–180.
  • Crank, J. The Mathematics of Diffusion, 2nd ed.; Clarendon Press: Oxford, UK, 1975.
  • Issa, R.I. Solution of the implicitly discretised fluid flow equations by operator splitting. Journal of Computational Physics 1985, 62, 40–65.
  • Griffith, J.D.; Bayly, A.E.; Johns, M.L. Magnetic resonance studies of detergent drop drying. Chemical Engineering Science 2008, 63, 3449–3456.
  • Nelson, P.A.; Stevens, W.F. Size distribution of droplets from centrifugal spray nozzles. AICHE Journal 1961, 7(1), 80–86.
  • Rosin, P.; Rammler, E. The laws governing the fineness of powdered coal. Journal of the Institute of Fuel 1933, 7, 29–36.
  • Gambit, version 2.4. 2006. Available at: http://www.ansys.com
  • Bayly, A.E.; Jukes, P.; Groossmbridge, M.; McNally, C. Airflow patterns in a counter-current spray drying tower—simulation and measurement. In Proceedings of the 14th International Drying Symposium, Sao Paulo, August 22–25, B, 2004; 775–781.
  • Yajnik, K.S.; Subbaiah, M.V. Experiments on swirling turbulent flows. Journal of Fluid Mechanics 1973, 60(4), 665–687.
  • Chaloud, J.H.; Martin, J.B.; Baker, J.S. Fundamentals of spray-drying detergents. Chemical Engineering Progress 1975, 53(12), 593–596.
  • Chang, F.; Dhir, V.K. Mechanisms of heat transfer enhancement and slow decay of swirl in tubes using tangential injection. International Journal of Heat and Fluid Flow 1995, 16(2), 78–87.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.