Publication Cover
Drying Technology
An International Journal
Volume 35, 2017 - Issue 9
356
Views
14
CrossRef citations to date
0
Altmetric
ARTICLES

Three-dimensional computational fluid dynamics (CFD) study of the gas–particle circulation pattern within a fluidized bed granulator: By full factorial design of fluidization velocity and particle size

, &

References

  • Iveson, S.M.; Litster, J.D.; Hapgood, K.; Ennis, B.J. Nucleation, growth and breakage phenomena in agitated wet granulation processes: A review. Powder Technology 2001, 117(1–2), 3–39.
  • Reynolds, G.K., Fu, J.; Cheong, Y-m.; Hounslow, M.J. Breakage in granulation: A review. Chemical Engineering Science 2005, 60(14), 3969–3992.
  • Rajniak, P., Stepanek, F.; Dhanasekharan, K.; Fan, R.; Mancinelli, C.; Chem, R.T. A combined experimental and computational study of wet granulation in a Wurster fluid bed granulator. Powder Technology 2009, 189(2), 190–201.
  • Ramkrishna, D. Population Balances. Theory and Applications to Particulate Systems in Engineering; Academic Press: New York, 2000.
  • Li, Z., Kessel, J.; Grünewald, G.; Kind, M. Coupled CFD-PBE Simulation of nucleation in fluidized bed spray granulation. Drying Technology 2013, 31(15), 1888–1896.
  • da Silva, C. A.M.; Taranto, O.P. Real-time monitoring of gas–solid fluidized-bed granulation and coating process: Evolution of particle size, fluidization regime transitions, and psychometric parameters. Drying Technology 2015, 33(15–16), 1929–1948.
  • Grünewald, G., Westhoff, B.; Kind, M. Fluidized bed spray granulation: Nucleation studies with steady-state experiments. Drying Technology 2010, 28(3), 349–360.
  • Link, K.C.; Schlünder, E-U. Fluidized bed spray granulation and film coating a new method for the investigation of the coating process on a single sphere. Drying Technology 1997, 15(6–8), 1827–1843.
  • Loh, Z.H., et al. Spray granulation for drug formulation. Expert Opinion on Drug Delivery 2011, 8(12), 1645–1661.
  • Faure, A., York, P.; Rowe, R.C. Process control and scale-up of pharmaceutical wet granulation processes: A review. European Journal of Pharmaceutics and Biopharmaceutics 2001, 52(3), 269–277.
  • Liu, H., Wang, K.; Schlindwein, W.; Li, M. Using the Box–Behnken experimental design to optimise operating parameters in pulsed spray fluidised bed granulation. International Journal of Pharmaceutics 2013, 448(2), 329–338.
  • Ehlers, H.; Liu, A.; Räikkönen, H.; Hatara, J.; Antikainen, O.; Airaksinen, S.; Heinämäki, J.; Lou, H.; Yliruusi, J. Granule size control and targeting in pulsed spray fluid bed granulation. International Journal of Pharmaceutics 2009, 377(1–2), 9–15.
  • Närvänen, T., Lipsanen, T.; Antikainen, O.; Räikkönen, H.; Yliruusi, J. Controlling granule size by granulation liquid feed pulsing. International Journal of Pharmaceutics 2008, 357(1–2), 132–138.
  • Liu, H.; Li, M. Population balance modelling and multi-stage optimal control of a pulsed spray fluidized bed granulation. International Journal of Pharmaceutics 2014a, 468(1–2), 223–233.
  • Liu, H.; Li, M. Two-compartmental population balance modeling of a pulsed spray fluidized bed granulation based on computational fluid dynamics (CFD) analysis. International Journal of Pharmaceutics 2014b, 475(1–2), 256–269.
  • Hemati, M., Cherif, R.; Saleh, K.; Pont, V. Fluidized bed coating and granulation: Influence of process-related variables and physicochemical properties on the growth kinetics. Powder Technology 2003, 130(1–3), 18–34.
  • Bouffard, J.; Kaster, M.; Dumont, H. Influence of process variable and physicochemical properties on the granulation mechanism of mannitol in a fluid bed top spray granulator. Drug Development and Industrial Pharmacy 2005, 31(9), 923–933.
  • Quevedo, J.A.; Flesch, J.; Pfeffer, R.; Dave, R. Evaluation of assisting methods on fluidization of hydrophilic nanoagglomerates by monitoring moisture in the gas phase. Chemical Engineering Science 2007, 62(9), 2608–2622.
  • Teunou, E.; Poncelet, D. Batch and continuous fluid bed coating—Review and state of the art. Journal of Food Engineering 2002, 53(4), 325–340.
  • Ronsse, F.; Depelchin, J.; Pieters, J.G. Particle surface moisture content estimation using population balance modelling in fluidised bed agglomeration. Journal of Food Engineering 2012, 109(3), 347–357.
  • Fan, X.; Yang, Z.; Parker, D.J. Impact of solid sizes on flow structure and particle motions in bubbling fluidization. Powder Technology 2011, 206(1–2), 132–138.
  • Laverman, J.A., Fan, X.; Ingram, A.; van Sint Annaland, M.; Parker, D.J.; Seville, J.P.K.; Kuipers, J.A.M. Experimental study on the influence of bed material on the scaling of solids circulation patterns in 3D bubbling gas–solid fluidized beds of glass and polyethylene using positron emission particle tracking. Powder Technology 2012, 224, 297–305.
  • Lin, J.S.; Chen, M.M.; Chao, B.T. A novel radioactive particle tracking facility for measurement of solids motion in gas fluidized beds. AIChE Journal 1985, 31(3), 465–473.
  • Mostoufi, N.; Chaouki, J. On the axial movement of solids in gas–solid fluidized beds. Chemical Engineering Research and Design 2000, 78(6), 911–920.
  • Pallarès, D.; Johnsson, F. A novel technique for particle tracking in cold 2-dimensional fluidized beds—Simulating fuel dispersion. Chemical Engineering Science 2006, 61(8), 2710–2720.
  • Zhong, W.Q., Zhang, Y.; Jin, B-S.; Zhang, M-Y. Discrete element method simulation of cylinder-shaped particle flow in a gas–solid fluidized bed. Chemical Engineering & Technology 2009, 32(3), 386–391.
  • Chalermsinsuwan, B.; Kuchonthara, P.; Piumsomboon, P. Effect of circulating fluidized bed reactor riser geometries on chemical reaction rates by using CFD simulations. Chemical Engineering and Processing: Process Intensification 2009, 48(1), 165–177.
  • Utikar, R.P.; Ranade, V.V. Single jet fluidized beds: Experiments and CFD simulations with glass and polypropylene particles. Chemical Engineering Science 2007, 62(1–2), 167–183.
  • Vaishali, S.; Roy, S.; Mills, P.L. Hydrodynamic simulation of gas–solids downflow reactors. Chemical Engineering Science 2008, 63(21), 5107–5119.
  • Taghipour, F.; Ellis, N.; Wong, C. Experimental and computational study of gas–solid fluidized bed hydrodynamics. Chemical Engineering Science 2005, 60(24), 6857–6867.
  • Al-Rashed, M., Wójcik, J.; Plewik, R.; Synowiec, P.; Kuś, A. Multiphase CFD modeling: Fluid dynamics aspects in scale-up of a fluidized-bed crystallizer. Chemical Engineering and Processing: Process Intensification 2013, 63, 7–15.
  • Li, Z., Kessel, J.; Grünewald, G.; Kind, M. CFD simulation on drying and dust integration in fluidized bed spray granulation. Drying Technology 2012, 30(10), 1088–1098.
  • Sae-Heng, S.; Swasdisevi, T.; Amornkitbamrung, M. Investigation of temperature distribution and heat transfer in fluidized bed using a combined CFD-DEM model. Drying Technology 2011, 29(6), 697–708.
  • Jaskulski, M.; Wawrzyniak, P.; Zbiciński, I. CFD model of particle agglomeration in spray drying. Drying Technology 2015, 33(15–16), 1971–1980.
  • Wawrzyniak, P. Modeling of dust explosion in the industrial spray dryer. Drying Technology 2012, 30(15), 1720–1729.
  • Fries, L.; Antonyuk, S.; Heinrich, S.; Palzer, S. DEM–CFD modeling of a fluidized bed spray granulator. Chemical Engineering Science 2011, 66(11), 2340–2355.
  • Grace, J.R.; Taghipour, F. Verification and validation of CFD models and dynamic similarity for fluidized beds. Powder Technology 2004, 139(2), 99–110.
  • Acosta-Iborra, A., Sobrino, C.; Hernández-Jiménez, F.; de Vega, M. Experimental and computational study on the bubble behavior in a 3-D fluidized bed. Chemical Engineering Science 2011, 66(15), 3499–3512.
  • Freireich, B., Wassgren, C.L.; Li, J.; Litster, J. Incorporating particle flow information from discrete element simulations in population balance models of mixer-coaters. Chemical Engineering Science 2011, 66(16), 3592–3604.
  • Dosta, M.; Antonyuk, S.; Heinrich, S. Multiscale simulation of agglomerate breakage in fluidized beds. Industrial & Engineering Chemistry Research 2013, 52(33), 11275–11281.
  • Kumar, A., Gernaey, K.V.; de Beer, T.; Nopens, I. Model-based analysis of high shear wet granulation from batch to continuous processes in pharmaceutical production—A critical review. European Journal of Pharmaceutics and Biopharmaceutics 2013, 85(3, Part B), 814–832.
  • Hosseini, S.H.; Zivdar, M.; Rahimi, R. CFD simulation of gas–solid flow in a spouted bed with a non-porous draft tube. Chemical Engineering and Processing: Process Intensification 2009, 48(11–12), 1539–1548.
  • Chalermsinsuwan, B.; Kuchonthara, P.; Piumsomboon, P. CFD modeling of tapered circulating fluidized bed reactor risers: Hydrodynamic descriptions and chemical reaction responses. Chemical Engineering and Processing: Process Intensification 2010, 49(11), 1144–1160.
  • Sánchez-Delgado, S., Marugán-Cruz, C.; Soria-Verdugo, A.; Santana, D. Estimation and experimental validation of the circulation time in a 2D gas–solid fluidized beds. Powder Technology 2013, 235, 669–676.
  • Lettieri, P., di Felice, R.; Pacciani, R.; Owoyemi, O. CFD modelling of liquid fluidized beds in slugging mode. Powder Technology 2006, 167(2), 94–103.
  • Anderson, T.B.; Jackson, R. Fluid mechanical description of fluidized beds. Equations of motion. Industrial & Engineering Chemistry Fundamentals 1967, 6(4), 527–539.
  • Lun, C.K.K., Savage, S.; Jeffrey, D.J.; Chepurniy, N. Kinetic theories for granular flow: Inelastic particles in Couette flow and slightly inelastic particles in a general flow field. Journal of Fluid Mechanics 1984, 140, 223–256.
  • Ronsse, F.; Depelchin, J.; Pieters, J.G. Particle surface moisture content estimation using population balance modelling in fluidised bed agglomeration. Journal of Food Engineering 2012, 109(3), 347–357.
  • Rowe, P.N. Estimation of solids circulation rate in a bubbling fluidised bed. Chemical Engineering Science 1973, 28(3), 979–980.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.