Publication Cover
Drying Technology
An International Journal
Volume 35, 2017 - Issue 13
573
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Discrete pore network modeling of superheated steam drying

, , &

References

  • Mujumdar, A.S. Handbook of Industrial Drying, 4th ed.; Taylor and Francis: Hoboken, 2014.
  • Zhu, J.; Wang, Q.; Lu, X. Status and developments of drying low rank coal with superheated steam in China. Drying Technology 2015, 33(9), 1086–1100. doi:10.1080/07373937.2014.942914
  • Romdhana, H.; Bonazzi, C.; Esteban-Decloux, M. Superheated steam drying: An overview of pilot and industrial dryers with a focus on energy efficiency. Drying Technology 2015, 33(10), 1255–1274. doi:10.1080/07373937.2015.1025139
  • van Deventer, H.C. Feasibility of energy efficient steam drying of paper and textile including process integration. Applied Thermal Engineering 1997, 17(8–10), 1035–1041. doi:10.1016/S1359-4311(97)00042-2
  • Iyota, H.; Nishimura, N.; Yoshida, M.; Nomura, T. Simulation of superheated steam drying considering initial condensation. Drying Technology 2001, 19(7), 1425–1440. doi:10.1081/DRT-100105298
  • Hamawand, I. Drying steps under superheated steam: A review and modeling. Energy and Environment Research 2013, 3(2). doi:10.5539/eer.v3n2p107
  • Chen, Z.; Wu, W.; Agarwal, P.K. Steam-drying of coal. Part 1. Modeling the behavior of a single particle. Fuel 2000, 79(8), 961–974. doi:10.1016/S0016-2361(99)00217-3
  • Looi, A. Drying kinetics of single porous particles in superheated steam under pressure. Chemical Engineering Journal 2002, 87(3), 329–338. doi:10.1016/S1385-8947(01)00244-3
  • Pakowski, Z.; Adamski, R.; Kwapisz, S. Effective diffusivity of moisture in low rank coal during superheated steam drying at atmospheric pressure. Chemical and Process Engineering 2012, 33(1), 43–51. doi:10.2478/v10176-012-0004-3
  • Sa-adchom, P.; Swasdisevi, T.; Nathakaranakule, A.; Soponronnarit, S. Mathematical model of pork slice drying using superheated steam. Journal of Food Engineering 2011, 104(4), 499–507. doi:10.1016/j.jfoodeng.2010.12.025
  • Kittiworrawatt, S.; Devahastin, S. Improvement of a mathematical model for low-pressure superheated steam drying of a biomaterial. Chemical Engineering Science 2009, 64(11), 2644–2650. doi:10.1016/j.ces.2009.02.036
  • Suvarnakuta, P.; Devahastin, S.; Mujumdar, A.S. A mathematical model for low-pressure superheated steam drying of a biomaterial. Chemical Engineering and Processing: Process Intensification 2007, 46(7), 675–683. doi:10.1016/j.cep.2006.09.002
  • Hager, J.; Hermansson, M.; Wimmerstedt, R. Modelling steam drying of a single porous ceramic sphere: experiments and simulations. Chemical Engineering Science 1997, 52(8), 1253–1264. doi:10.1016/S0009-2509(96)00493-9
  • Hager, J.; Wimmerstedt, R.; Whitaker, S. Steam drying a bed of porous spheres: Theory and experiment. Chemical Engineering Science 2000, 55(9), 1675–1698. doi:10.1016/S0009-2509(99)00398-X
  • Messai, S.; Sghaier, J.; El Ganaoui, M.; Chrusciel, L.; Gabsi, S. Low-pressure superheated steam drying of a porous media. Drying Technology 2014, 33(1), 103–110. doi:10.1080/07373937.2014.933843
  • Sghaier, J.; Messai, S.; Belghith, A. Superheated steam and humid air drying of a packed bed of porous particles: Theoretical study. International Journal of Heat and Technology 2008, 26(2), 77–84.
  • Blunt, M.J.; Jackson, M.D.; Piri, M.; Valvatne, P.H. Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow. Advances in Water Resources 2002, 25(8–12), 1069–1089. doi:10.1016/S0309-1708(02)00049-0
  • Prat, M. Recent advances in pore-scale models for drying of porous media. Chemical Engineering Journal 2002, 86(1–2), 153–164. doi:10.1016/S1385-8947(01)00283-2
  • Joekar-Niasar, V.; Hassanizadeh, S.M. Analysis of fundamentals of two-phase flow in porous media using dynamic pore-network models: A review. Critical Reviews in Environmental Science and Technology 2012, 42(18), 1895–1976. doi:10.1080/10643389.2011.574101
  • Sahimi, M. Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches, 2nd ed.; Wiley-VCH: Weinheim, 2011.
  • Metzger, T.; Tsotsas, E.; Prat, M. Pore-network models: A powerful tool to study drying at the pore level and understand the influence of structure on drying kinetics. In Modern Drying Technology, Volume 1, Computational Tools at Different Scales; Tsotsas, E., Mujumdar, A.S. Eds.; Wiley-VCH: Weinheim, Germany, 2007.
  • Patzek, T.W. Verification of a complete pore network simulator of drainage and imbibition. SPE Journal 2013, 6(2), 144–156. doi:10.2118/71310-PA
  • Sun, Y.; Kharaghani, A.; Tsotsas, E. Micro-model experiments and pore network simulations of liquid imbibition in porous media. Chemical Engineering Science 2016, 150, 41–53. doi:10.1016/j.ces.2016.04.055
  • Al-Dhahli, A.R.; Geiger, S.; van Dijke, Marinus I.J. Three-phase pore-network modeling for reservoirs with arbitrary wettability. SPE Journal 2012, 18(2), 285–295. doi:10.2118/147991-PA
  • Wu, R.; Liao, Q.; Zhu, X.; Wang, H. Impacts of the mixed wettability on liquid water and reactant gas transport through the gas diffusion layer of proton exchange membrane fuel cells. International Journal of Heat and Mass Transfer 2012, 55(9–10), 2581–2589. doi:10.1016/j.ijheatmasstransfer.2012.01.002
  • Prat, M. Pore network models for the study of transfers in the porous wick of loop heat pipe. Heat Pipe Science and Technology, An International Journal 2010, 1(2), 129–149. doi:10.1615/HeatPipeSciTech.v1.i2.20
  • Le, K.H.; Kharaghani, A.; Kirsch, C.; Tsotsas, E. Pore network simulations of heat and mass transfer inside an unsaturated capillary porous wick in the dry-out regime. Transport in Porous Media 2016, 114(3), 623–648. doi:10.1007/s11242-016-0737-4
  • Wilkinson, D.; Willemsen, J.F. Invasion percolation: A new form of percolation theory. Journal of Physics A: Mathematical and General 1983, 16(14), 3365–3376. doi:10.1088/0305-4470/16/14/028
  • Surasani, V.K.; Metzger, T.; Tsotsas, E. Consideration of heat transfer in pore network modelling of convective drying. International Journal of Heat and Mass Transfer 2008, 51(9–10), 2506–2518. doi:10.1016/j.ijheatmasstransfer.2007.07.033
  • Plourde, F.; Prat, M. Pore network simulations of drying of capillary porous media: Influence of thermal gradients. International Journal of Heat and Mass Transfer 2003, 46(7), 1293–1307. doi:10.1016/S0017-9310(02)00391-5
  • Taleghani, S.T.; Dadvar, M. Two dimensional pore network modelling and simulation of non-isothermal drying by the inclusion of viscous effects. International Journal of Multiphase Flow 2014, 62, 37–44. doi:10.1016/j.ijmultiphaseflow.2014.02.001
  • Surasani, V.K.; Metzger, T.; Tsotsas, E. Drying simulations of various 3D pore structures by a nonisothermal pore network model. Drying Technology 2010, 28(5), 615–623. doi:10.1080/07373931003788676
  • Surasani, V.K.; Metzger, T.; Tsotsas, E. Influence of heating mode on drying behavior of capillary porous media: Pore scale modeling. Chemical Engineering Science 2008, 63(21), 5218–5228. doi:10.1016/j.ces.2008.07.011
  • Blunt, M.J.; Bijeljic, B.; Dong, H.; Gharbi, O.; Iglauer, S.; Mostaghimi, P.; Paluszny, A.; Pentland, C. Pore-scale imaging and modelling. Advances in Water Resources 2013, 51, 197–216. doi:10.1016/j.advwatres.2012.03.003
  • Wang, Y.; Kharaghani, A.; Metzger, T.; Tsotsas, E. Pore network drying model for particle aggregates: Assessment by X-ray microtomography. Drying Technology 2012, 30(15), 1800–1809. doi:10.1080/07373937.2012.713422
  • Kharaghani, A.; Metzger, T.; Tsotsas, E. An irregular pore network model for convective drying and resulting damage of particle aggregates. Chemical Engineering Science 2012, 75, 267–278. doi:10.1016/j.ces.2012.03.038
  • Whitaker, S. Simultaneous heat, mass, and momentum transfer in porous media: A theory of drying. In Advances in heat transfer; Harnett, J.P., Irvine, T.F. Eds.; Academic Press: New York, London, 1977; 119–203.
  • Eames, I.W.; Marr, N.J.; Sabir, H. The evaporation coefficient of water: A review. International Journal of Heat and Mass Transfer 1997, 40(12), 2963–2973. doi:10.1016/S0017-9310(96)00339-0
  • Ghiaasiaan, M. Gas–Liquid Two-Phase Flow: Boiling and Condensation in Conventional, Mini and Micro Systems; Cambridge University Press: New York, 2007.
  • Pound, G.M. Selected values of evaporation and condensation coefficients for simple substances. Journal of Physical and Chemical Reference Data 1972, 1(1), 135–146. doi:10.1063/1.3253096
  • Al-Futaisi, A.; Patzek, T.W. Extension of Hoshen–Kopelman algorithm to non-lattice environments. Physica A: Statistical Mechanics and its Applications 2003, 321(3–4), 665–678. doi:10.1016/S0378-4371(02)01586-8
  • Metzger, T.; Irawan, A.; Tsotsas, E. Remarks on the paper “Extension of Hoshen–Kopelman algorithm to non-lattice environments” by A. Al-Futaisi and T.W. Patzek, Physica A 321 (2003) 665–678. Physica A: Statistical Mechanics and its Applications 2006, 363(2), 558–560. doi:10.1016/j.physa.2005.08.026
  • Wagner, W. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. Journal of Physical and Chemical Reference Data 1999, 31(2), 387. doi:10.1063/1.1461829
  • Vargaftik, N.B.; Volkov, B.N.; Voljak, L.D. International tables of the surface tension of water. Journal of Physical and Chemical Reference Data 1983, 12(3), 817. doi:10.1063/1.555688
  • Heinen, M.; Vrabec, J.; Fischer, J. Communication: Evaporation: Influence of heat transport in the liquid on the interface temperature and the particle flux. The Journal of Chemical Physics 2016, 145(8), 81101. doi:10.1063/1.4961542
  • Woo, M.W.; Stokie, D.; Choo, W.L.; Bhattacharya, S. Master curve behaviour in superheated steam drying of small porous particles. Applied Thermal Engineering 2013, 52(2), 460–467. doi:10.1016/j.applthermaleng.2012.11.038
  • Metzger, T.; Irawan, A.; Tsotsas, E. Isothermal drying of pore networks: Influence of friction for different pore structures. Drying Technology 2007, 25(1), 49–57. doi:10.1080/07373930601152640
  • Devahastin, S.; Suvarnakuta, P.; Soponronnarit, S.; Mujumdar, A.S. A comparative study of low-pressure superheated steam and vacuum drying of a heat-sensitive material. Drying Technology 2004, 22(8), 1845–1867. doi:10.1081/DRT-200032818
  • Johansson, A.; Fyhr, C.; Rasmuson, A. High temperature convective drying of wood chips with air and superheated steam. International Journal of Heat and Mass Transfer 1997, 40(12), 2843–2858. doi:10.1016/S0017-9310(96)00341-9
  • Schlünder, E-U. Drying of porous material during the constant and the falling rate period: A critical review of existing hypotheses. Drying Technology 2004, 22(6), 1517–1532. doi:10.1081/DRT-120038738
  • Vorhauer, N.; Metzger, T.; Tsotsas, E. On the influence of temperature gradients on drying of pore networks. In Proceedings of European Drying Conference 2011, Palma, Spain, October 26–28.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.