Publication Cover
Drying Technology
An International Journal
Volume 35, 2017 - Issue 13
202
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Wettability modification of lignite by adsorption of alkyltrimethylammonium bromides with different alkyl chain length

&

References

  • World Energy Council website. http://www.worldenergy.org.
  • Yu, J.; Tahmasebi, A.; Han, Y.; Yin, F.; Li, X. A review on water in low rank coals: The existence, interaction with coal structure and effects on coal utilization. Fuel Processing Technology 2013, 106(2), 9–20.
  • Karthikeyan, M.; Wu, Z.; Mujumdar, A.S. Low-rank coal drying technologies—Current status and new developments. Drying Technology 2009, 27(3), 403–415.
  • Osman, H.; Jangam, S.V.; Lease, J.D.; Mujumdar, A.S. Drying of low-rank coal (LRC)—A review of recent patents and innovations. Drying Technology 2011, 29(15), 1763–1783.
  • Allardice, D.J.; Clemow, L.M.; Favas, G.; Jackson, W.R.; Marshall, M.; Sakurovs, R. The characterisation of different forms of water in low rank coals and some hydrothermally dried products. Fuel 2003, 82(6), 661–667.
  • Domazetis, G.; Barilla, P.; James, B.D.; Glaisher, R. Treatments of low rank coals for improved power generation and reduction in greenhouse gas emissions. Fuel Processing Technology 2008, 89(1), 68–76.
  • Jangam, S.V.; Karthikeyan, M.; Mujumdar, A.S. A critical assessment of industrial coal drying technologies: Role of energy, emissions, risk and sustainability. Drying Technology 2011, 29(4), 395–407.
  • Sakaguchi, M.; Laursen, K.; Nakagawa, H.; Miura, K. Hydrothermal upgrading of Loy Yang Brown coal—Effect of upgrading conditions on the characteristics of the products. Fuel Processing Technology 2008, 89(4), 391–396.
  • Jing, X.; Li, Z.; Zhang, Y.; Chang, L. Changes of oxygen-containing groups during thermal treatment and their influences on moisture readsorption of lignite. Drying Technology 2016, 34(6), 729–739.
  • Karthikeyan, M. Minimization of moisture readsorption in dried coal samples. Drying Technology 2008, 26(7), 948–955.
  • Man, C.; Liu, Y.; Zhu, X.; Che, D. Moisture re-adsorption performance of air-dried and hydrothermally dewatered lignite. Energy Fuels 2014, 28(8), 5023–5030.
  • Favas, G.; Jackson, W.R. Hydrothermal dewatering of lower rank coals. 2. Effects of coal characteristics for a range of Australian and international coals. Fuel 2003, 82(1), 59–69.
  • He, Q.; Yeasmin, H.; Miao, Z.; Wan, K.; Huang, S.; Hoadleyc, A.; Qid, Y.; Chaffeed, A. A comparison of acid treatment in the dewatering of Chinese and Australian lignites by mechanical thermal expression at high temperatures. Full Processing Technology 2016, 144, 282–289.
  • Crawford, R.J.; Mainwaring, D.E. The influence of surfactant adsorption on the surface characterisation of Australian coals. Fuel 2001, 80(3), 313–320.
  • Pagac, E.S.; Prieve, D.C.; Tilton, R.D. Kinetics and mechanism of cationic surfactant adsorption and co-adsorption with cationic polyelectrolytes at the silica-water interface. Langmuir 1998, 14(9), 2333–2342.
  • Alila, S.; Boufi, S.; Belgacem, M.N.; Beneventi, D. Adsorption of a cationic surfactant onto cellulosic fibers I. Surface charge effects. Langmuir 2005, 21(18), 8106–8113.
  • Gutig, C.; Grady, B.P.; Striolo, A. Experimental studies on the adsorption of two surfactants on solid-aqueous interfaces: Adsorption isotherms and kinetics. Langmuir 2008, 24(9), 4806–4816.
  • Tabor, R.F.; Eastoe, J.; Dowding, P.J. A two-step model for surfactant adsorption at solid surfaces. Journal of Colloid and Interface Science 2010, 346(2), 424–428.
  • Ahmadi, M.A.; Shadizadeh, S.R. Experimental investigation of adsorption of a new nonionic surfactant on carbonate minerals. Fuel 2013, 104(2), 462–467.
  • Song, E.M.; Kim, D.W.; Lim, J.C. Effect of adsorption of laureth sulfonic acid type anionic surfactant on the wetting property of CaCO3 substrate. Journal of Industrial and Engineering Chemistry 2015, 28, 351–358.
  • Ahmadi, M.A.; Galedarzadeh, M.; Shadizadeh, S.R. Wettability alteration in carbonate rocks by implementing new derived natural surfactant: enhanced oil recovery applications. Transport in Porous Media 2015, 106(3), 645–667.
  • Xhanar, K.; Syverud, K.; Chinga-Carrasco, G.; Paso, K. Reduction of water wettability of nanofibrillated cellulose by adsorption of cationic surfactants. Cellulose 2011, 18(2), 257–270.
  • Shan, K.J.; Mishara, M.K.; Shukia, A.D.; Image, T.; Shah, D.O. Controlling wettability and hydrophobicity of organoclays modified with quaternary ammonium surfactants. Journal of Colloid and Interface Science 2013, 407(10), 493–499.
  • Maestro, A.; Guzmán, E.; Santini, E.; Ravera, F.; Liggieri, L.; Ortega, F.; Rubio, R.G. Wettability of silica nanoparticle-surfactant nanocomposite interfacial layers. Soft Matter 2012, 8(3), 837–843.
  • Cao, M.; Song, X.; Wang, J.; Wang, Y. Adsorption of hexyl-ω-bis (dodecyldimethylammonium bromide) gemini surfactant on silica and its effect on wettability. Journal of Colloid and Interface Science 2006, 300(2), 519–525.
  • Hassan, S.; Duclaux, L.; Leveque, J.M.; Reinert, L.; Farooq, A.; Yasin, T. Effect of cation type, alkyl chain length, adsorbate size on adsorption kinetics and isotherms of bromide ionic liquids from aqueous solutions onto microporous fabric and granulated activated carbons. Journal of Environmental Management 2014, 144(21), 108–117.
  • Elsherbiny, A.S.; Salem, M.A.; Ismail, A.A. Influence of the alkyl chain length of cyanine dyes on their adsorption by Na+-montmorillonite from aqueous solutions. Chemical Engineering Journal 2012, 200–202, 283–290.
  • Somasundaran, P.; Fuerstenau, D.W. Mechanisms of alkyl sulfonate adsorption at the alumina-water interface. Journal of Physical Chemistry 1966, 70(1), 90–96.
  • Mivehi, L.; Bordes, R.; Holmberg, K. Adsorption of cationic gemini surfactants at solid surfaces studied by QCM-D and SPR-effect of the presence of hydroxyl groups in the spacer. Colloids and Surfaces A 2013, 419, 21–27.
  • Simončič, B.; Rozman, V. Wettability of cotton fabric by aqueous solutions of surfactants with different structures. Colloids and Surface A 2007, 292(2–3), 236–245.
  • Xie, Q.; Xie, J.; Wang, Z.; Wu, D.; Zhang, Z.; Kong, H. Adsorption of organic pollutants by surfactant modified zeolite as controlled by surfactant chain length. Microporous and Mesoporous Materials 2013, 179(17), 144–150.
  • Gonzalez-Garcia, C.M.; Gonzalez-Martin, M.L.; Gonzalez, J.F.; Sabioa, E.; Ramiroa, A.; Ganana, J. Nonionic surfactants adsorption onto activated carbon: Influence of the polar chain length. Powder Technology 2004, 148(1), 32–37.
  • Dey, S. Enhancement in hydrophobicity of low rank coal by surfactants—A critical overview. Fuel Processing Technology 2012, 94(1), 151–158.
  • Chander, S.; Polat, H.; Mohal, B. Flotation and wettability of a low-rank coal in the presence of surfactants. Mineral and Metallurgical Processing 1994, 11(1), 55–60.
  • Jia, R.; Harris, G.H.; Fuerstenau, D.W. An improved class of universal collectors for the flotation of oxidized and low-rank coal. International Journal of Mineral Processing 2000, 58(1–4), 99–118.
  • Naik, P.K.; Reddy, P.S.R.; Misra, V.N. Interpretation of interaction effects and optimization of reagent dosages for fine coal flotation. International Journal of Mineral Processing 2005, 75(1), 83–90.
  • Polat, M.; Polat, H.; Chander, S. Physical and chemical interactions in coal flotation. International Journal of Mineral Processing 2003, 72(1–4), 199–213.
  • Qu, J.; Tao, X.; He, H.; Zhang, X.; Xu, N.; Zhang, B. Synergistic effect of surfactants and a collector on the flotation of a low-rank coal. International Journal of Coal Preparation and Utilization 2015, 35(1), 14–24.
  • Xie, W.; Cao, G.; Ren, X.; Li, Y. Effect of flotation promoter on the rate of coal slime flotation. Journal of Mining Science 2014, 50(3), 601–607.
  • Laskowski, J.S.; Yu, Z. Oil agglomeration and its effect on beneficiation and filtration of low-rank/oxidized coals. International Journal of Mineral Processing 2000, 58(1), 237–252.
  • Jia, R.; Harris, G.H.; Fuerstenau, D.W. Chemical reagents for enhanced coal flotation. Coal Preparation 2002, 22(3), 123–149.
  • Ozmak M.; Aktas, Z. Coal foth flotation: Effects of reagent adsorption on the froth structure. Energy and Fuels 2006, 20(3), 1123–1130.
  • Wu, Z.H.; Hu, Y.J.; Lee, D.J.; Mujumdar, A.S.; Li, Z.Y. Dewatering and drying in mineral processing industry: Potential for innovation. Drying Technology 2010, 28(7), 834–842.
  • Taborda, E.A.; Ariza, C.A.F.; Jurado, W.A.; Nassar, N.N.; Cortés, F.B. Effects of glycerol on the minimization of water re-adsorption on sub-bituminous coal. Drying Technology 2016, 35(2), 249–260. doi:10.1080/07373937.2016.1170699
  • Laskowski, J.S. Coal surface chemistry and its effects on fine coal processing. In High Efficiency Coal Preparation: An International Symposium SME; Kawatra, S.K. Ed.; Society for Mining Metallurgy and Exploration: Littleton, CO, 1995; 163–176.
  • Singh, B.P. The role of surfactant adsorption in the improved dewatering of fine coal. Fuel 1999, 78(4), 501–506.
  • Gurse, A.; Bayrakqeken, S.; Doymus, K.; Gulaboglu, M.S. Adsorption of CTAB at lignite-aqueous solution interface. Fuel Processing Technology 1995, 45(2), 75–84.
  • Qi, Y.; Hoadley, A.F.A.; Chaffee, A.L.; Garnier, G. Characterisation of lignite as an industrial adsorbent. Fuel 2011, 90(4), 1567–1574.
  • Chang, H.; Jia, Z.; Zhang, P.; Li, X.; Gao, W.; Wei, W. Interaction between quaternary ammonium surfactants with coal pitch and analysis surfactants effects on preparing coal pitch water slurry. Colloids and Surface A 2015, 471, 101–107.
  • Carey, E.; Patil, S.R.; Stubenrauch, C. Conductivity measurements as a method for studying ionic technical grade surfactants. Physical Chemistry 2008, 45(3), 120–125.
  • Abdel-Rahem, R.A. Micellar parameters in solutions with cationic surfactants and N,N-dimethyldodecan-1-amine oxide: Influence of cationic surfactant chain length. Journal of Chemical & Engineering Data 2012, 57(3), 957–966.
  • Bashford, M.T.; Woolley, E.M. Enthalpies of dilution of aqueous decyl-, dodecyl-, tetradecyl-, and hexadecyltrimethylammonium bromides at 10, 25, 40, and 55°C. Journal of Physical Chemistry 1985, 89(14), 3173–3179.
  • Giles, C.H.; Macewan, T.H.; Nakhwa, S.N.; Smith, D. Studies in adsorption, part XI: A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. Journal of the Chemical Society 1960, 111, 3973–3993.
  • Finar, I.L. Organic Chemistry Vol. 1: The Fundamental Principles; Longman Group Ltd: London, 1973; 272.
  • Wang, J.; Han, B.; Dai, M.; Yan, H.; Li, Z.; Thomas, R.K. Effect of chain length and structure of cationic surfactants on the adsorption onto Na-Kaolinite. Journal of Colloid and Interface Science 1999, 213(2), 596–601.
  • Li, Z.; Gallus, L. Adsorption of dodecyl trimethylammonium and hexadecyl trimethyl- ammonium onto kaolinite-competitive adsorption and chain length effect. Applied Clay Science 2007, 35(3–4), 250–257.
  • Yu, Q.A.; Zhang, R.Q.; Deng, S.B.; Huang, J.; Yu, G. Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: Kinetic and isotherm study. Water Research 2009, 43(4), 1150–1158.
  • Giles, C.H.; Smith, D.; Huitson, A. A general treatment and classification of the solute adsorption isotherm I. Theoretical. Journal of Colloid and Interface Science 1973, 47(3), 755–765.
  • Shang, X.; Si, C.; Wu, J.; Miao, Z.; Zhang, Y.; Wang, Y.; Wang, B.; Hou, K. Comparison of drying methods on physical and chemical properties of shengli lignite. Drying Technology 2016, 34(4), 454–461.
  • Xia, W.; Xie, G.; Liang, C.; Yang, J. Flotation behavior of different size fractions of fresh and oxidized coals. Powder Technology 2014, 267, 80–85.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.