Publication Cover
Drying Technology
An International Journal
Volume 36, 2018 - Issue 7
792
Views
22
CrossRef citations to date
0
Altmetric
ARTICLES

Microorganism preservation by convective air-drying—A review

, &
Pages 764-779 | Received 19 Dec 2016, Accepted 11 Jul 2017, Published online: 30 Aug 2017

References

  • Kurozawa, L. E.; Terng, I.; Hubinger, M. D.; Park, K. J. Ascorbic Acid Degradation of Papaya during Drying: Effect of Process Conditions and Glass Transition Phenomenon. J. Food Eng. 2014, 123, 157–164. doi:10.1016/j.jfoodeng.2013.08.039
  • Moses, J. A.; Norton, T.; Alagusundaram, K.; Tiwari, B. K. Novel Drying Techniques for the Food Industry. Food Eng. Rev. 2014, 6 (3), 43–55. doi:10.1007/s12393-014-9078-7
  • Gao, S.; Lewis, G. D.; Ashokkumar, M.; Hemar, Y. Inactivation of Microorganisms by Low-Frequency High-Power Ultrasound: 2. A Simple Model for the Inactivation Mechanism. Ultrason. Sonochem. 2014, 21 (1), 454–60. doi:10.1016/j.ultsonch.2013.06.007
  • Morgan, C. A.; Herman, N.; White, P. A.; Vesey, G. Preservation of Micro-organisms by Drying; A Review. J. Microbiol. Methods 2006, 66 (2), 183–93. doi:10.1016/j.mimet.2006.02.017
  • Soccol, C.; Pandey, A.; Larroche, C. Fermentation Processes Engineering in the Food Industry; CRC Press: Boca Raton, USA, 2013.
  • Holmén, K. 11 The Global Carbon Cycle. Mar. Geol. 1992, 50, 239–262.
  • Horuz, E.; Jaafar, H. J.; Maskan, M. Ultrasonication as Pretreatment for Drying of Tomato Slices in a Hot Air-Microwave Hybrid Oven. Drying Technol. 2016, 35, 849–859. doi:10.1080/07373937.2016.1222538
  • Fu, N.; Chen, X. D. Towards a Maximal Cell Survival in Convective Thermal Drying Processes. Food Res. Int. 2011, 44 (5), 1127–1149. doi:10.1016/j.foodres.2011.03.053
  • Zhu, Z.; Luan, C.; Zhang, H.; Zhang, L.; Hao, Y. Effects of Spray Drying on Lactobacillus plantarum BM-1 Viability, Resistance to Simulated Gastrointestinal Digestion, and Storage Stability. Drying Technol. 2016, 34 (2), 177–184. doi:10.1080/07373937.2015.1021009
  • Perdana, J.; Aguirre Zubia, A.; Kutahya, O.; Schutyser, M.; Fox, M. Spray Drying of Lactobacillus plantarum WCFS1 Guided by Predictive Modeling. Drying Technol. 2015, 33 (15–16), 1789–1797. doi:10.1080/07373937.2015.1026975
  • Foerst, P.; Santivarangkna, C. Advances in Starter Culture Technology: Focus on Drying Processes. In Advances in Fermented Foods and Beverages : Improving Quality, Technologies and Health Benefits; Holzapfel, W., Alessandria, V., Eds.; 2014; pp 249–270.[AQ book pub loc]
  • Martinez-Sosa, D.; Torrijos, M.; Buitron, G.; Sousbie, P.; Devillers, P. H.; Delgenès, J. P. Treatment of Fatty Solid Waste From the Meat Industry in an Anaerobic Sequencing Batch Reactor: Start-Up Period and Establishment of the Design Criteria. Water Sci. Technol. 2009, 60 (9), 2245. doi:10.2166/wst.2009.658
  • Lobato, J.; Cañizares, P.; Fernández, F. J.; Rodrigo, M. A. An Evaluation of Aerobic and Anaerobic Sludges as Start-Up Material for Microbial Fuel Cell Systems. New Biotechnol. 2012, 29 (3), 415–420. doi:10.1016/j.nbt.2011.09.004
  • Vallés-Morales, M. J.; Mendoza-Roca, J. A.; Bes-Pií, A.; Iborra-Clar, A.. Nitrogen Removal From Sludge Water With SBR Process: Start-Up of a Full-Scale Plant in the Municipal Wastewater Treatment Plant At Ingolstadt, Germany. Water Sci. Technol. 2004, 50 (10), 51–58.
  • Lievense, L. C.; van’t Riet, K. Convective Drying of Bacteria. In Advances in Biochemical Engineering/Biotechnology; Fiechter, A., Ed.; Springer: Berlin, Germany, 1993; pp 45–63.
  • Poh, P. E.; Chong, M. F. Upflow Anaerobic Sludge Blanket-Hollow Centered Packed Bed (UASB-HCPB) Reactor for Thermophilic Palm Oil Mill Effluent (POME) Treatment. Biomass Bioenergy 2014, 67, 231–242. doi:10.1016/j.biombioe.2014.05.007
  • Delele, M. A.; Weigler, F.; Mellmann, J. Advances in the Application of a Rotary Dryer for Drying of Agricultural Products: A Review. Drying Technol. 2015, 33 (5), 541–558. doi:10.1080/07373937.2014.958498
  • Farokhian, F.; Jafarpour, M.; Goli, M.; Askari-Khorasgani, O. Quality Preservation of Air-Dried Sliced Button Mushroom (Agaricus bisporus) by Lavender (Lavendula angustifolia Mill.) Essential Oil. J. Food Process Eng. 2016, 40, e12432.
  • Brennan, J. G.; Drying. Theory of Air-Drying. In Encyclopedia of food sciences and nutrition; Caballero, B., Trugo, L., Finglas, P., Eds.; Academic Press: Elsevier Sci Ltd., Oxford, UK, 2003; pp 1913–1917.
  • Skibsted, L. H.; Risbo, J.; Andersen, M. L. Chemical Deterioration and Physical Instability of Food and Beverages; CRC Press: Boca Raton, 2010.
  • Bórquez, R.; Bustos, P.; Caro, F.; Ferrer, J. Atmospheric Freeze-Impingement Drying of an Autochthonous Microencapsulated Probiotic Strain. Drying Technol. 2013, 31 (5), 535–548. doi:10.1080/07373937.2012.745091
  • Fraikin, L.; Herbreteau, B.; Salmon, T.; Nicol, F.; Crine, M.; Léonard, A. Use of an Experimental Design to Characterize the Convective Drying Behavior of Different Sludges. Drying Technol. 2015, 33 (11), 1302–1308. doi:10.1080/07373937.2015.1026979
  • Zeng, W.; Zhou, H.; Liu, X.; Qiu, G. Preservation of Moderately Thermophilic Culture by Freeze Drying and Frozen Preservation Way and Effect on Subsequent Bioleaching of Chalcopyrite. Trans. Nonferrous Met. Soc. China 2010, 20 (5), 882–887. doi:10.1016/s1003-6326(09)60230-2
  • Schoug, Å.; A Dry Phase of Life; Swedish University of Agricultural Sciences: SLU Service/Repro, 2009.
  • Gong, P.; Zhang, L.; Han, X.; Shigwedha, N.; Song, W.; Yi, H.; Du, M.; Cao, C. Injury Mechanisms of Lactic Acid Bacteria Starter Cultures During Spray Drying: A Review. Drying Technol. 2014, 32 (7), 793–800. doi:10.1080/07373937.2013.860458
  • Amaral, I. C.; de Resende, J. V.; Braga Júnior, R. A.; Ribeiro de Lima, R. Evaluation of the Adsorption Behavior of Freeze-Dried Passion Fruit Pulp with Added Carriers by Traditional Biospeckle Laser Techniques. Drying Technol. 2016, 35, 55–65. doi:10.1080/07373937.2016.1159575
  • Lee, Y. H.; Chin, S. K.; Chung, B. K. Drying Characteristics and Product Quality of Lemon Slices Dried with Hot Air Circulation Oven and Hybrid Heatpump Dryers. Int. J. Sci. Eng. 2015, 8 (1), 69–74.
  • Perdana, J.; Bereschenko, L.; Fox, M. B.; Kuperus, J. H.; Kleerebezem, M.; Boom, R. M.; Schutyser, M. A. I. Dehydration and Thermal Inactivation of Lactobacillus plantarum WCFS1: Comparing Single Droplet Drying to Spray and Freeze Drying. Food Res. Int. 2013, 54 (2), 1351–1359. doi:10.1016/j.foodres.2013.09.043
  • Ratti, C. Hot Air and Freeze-Drying of High-Value Foods: A Review. J. Food Eng. 2001, 49 (4), 311–319. doi:10.1016/s0260-8774(00)00228-4
  • Papapostolou, H.; Bosnea, L. A.; Koutinas, A. A.; Kanellaki, M. Fermentation Efficiency of Thermally Dried Kefir. Bioresour. Technol. 2008, 99, 6949–6956. doi:10.1016/j.biortech.2008.01.026
  • Ortiz, J.; Lemus-Mondaca, R.; Vega-Gálvez, A.; Ah-Hen, K.; Puente-Diaz, L.; Zura-Bravo, L.; Aubourg, S. Influence of Air-Drying Temperature on Drying Kinetics, Colour, Firmness and Biochemical Characteristics of Atlantic salmon (Salmo salar L.) Fillets. Food Chem. 2013, 139 (1), 162–169. doi:10.1016/j.foodchem.2013.01.037
  • Wang, Y.; Zhang, L.; Johnson, J.; Gao, M.; Tang, J.; Powers, J. R.; Wang, S. Developing Hot Air-Assisted Radio Frequency Drying for In-shell Macadamia Nuts. Food Bioprocess Technol. 2014, 7 (1), 278–288. doi:10.1007/s11947-013-1055-2
  • Albanese, D.; Cinquanta, L.; Cuccurullo, G.; Di Matteo, M. Effects of Microwave and Hot-Air Drying Methods on Colour, β-Carotene and Radical Scavenging Activity of Apricots. Int. J. Food Sci. Technol. 2013, 48 (6), 1327–1333. doi:10.1111/ijfs.12095
  • Russo, P.; Adiletta, G.; Di Matteo, M. The Influence of Drying Air Temperature on the Physical Properties of Dried and Rehydrated Eggplant. Food Bioprod. Process. 2013, 91 (3), 249–256. doi:10.1016/j.fbp.2012.10.005
  • Ghanem Romdhane, N.; Djendoubi, N.; Bonazzi, C.; Kechaou, N.; Boudhrioua Mihoubi, N. Effect of Combined Air-Drying-Osmotic Dehydration on Kinetics of Techno-Functional Properties, Color and Total Phenol Contents of Lemon (Citrus limon. v. lunari) Peels. Int. J. Food Eng. 2016, 12 (6), 515–525. doi:10.1515/ijfe-2015-0252
  • Homolka, L. Preservation of Live Cultures of Basidiomycetes - Recent Methods. Fungal Biol. 2014, 118 (2), 107–125. doi:10.1016/j.funbio.2013.12.002
  • Gordienko, M. G.; Voynovskiy, A. A.; Menshutina, N. V. Design of a Kinetic Model for Degradation of Substances During Spray Drying Using Yeast Biosuspension, Oil-in-Water Emulsion, and Alumosilicate Suspension. Drying Technol. 2015, 33 (1), 24–36. doi:10.1080/07373937.2014.928727
  • Goldman, E.; Green, L. H. Practical Handbook of Microbiology, 3rd ed.; CRC Press: Beaverton, 2015.
  • Alonso, S. Novel Preservation Techniques for Microbial Cultures; Springer International Publishing Switzerland, 2016; pp 7–33.
  • Pirasteh, G.; Saidur, R.; Rahman, S. M. A.; Rahim, N. A. A Review on Development of Solar Drying Applications. Renewable Sustainable Energy Rev. 2014, 31, 133–148. doi:10.1016/j.rser.2013.11.052
  • Bennamoun, L.; Arlabosse, P.; Léonard, A. Review on Fundamental Aspect of Application of Drying Process to Wastewater Sludge. Renewable Sustainable Energy Rev. 2013, 28, 29–43. doi:10.1016/j.rser.2013.07.043
  • Goh, L. J.; Othman, M. Y.; Mat, S.; Ruslan, H.; Sopian, K. Review of Heat Pump Systems for Drying Application. Renewable Sustainable Energy Rev. 2011, 15 (9), 4788–4796. doi:10.1016/j.rser.2011.07.072
  • Wolkers, W. F.; Oldenhof, H., eds. Cryopreservation and Freeze-Drying Protocols, Vol. 1257, Methods in Molecular BiologySpringer New York: New York, NY, 2015.
  • Rey, L.; May, J. C.; Freeze Drying/lyophilization of Pharmaceutical and Biological Products; CRC Press: UK, 2010.
  • Mohanty, P.; Das, M. C.; Kumaria, S.; Tandon, P. Cryopreservation of Pharmaceutically Important Orchid Dendrobium chrysanthum Wall. ex Lindl. Using Vitrification Based Method. Acta Physiol. Plant. 2012, 35 (4), 1373–1379. doi:10.1007/s11738-012-1163-z
  • Morais, A. R. do V.; Alencar, É. do N.; Xavier Júnior, F. H.; Oliveira, C. M. de.; Marcelino, H. R.; Barratt, G.; Fessi, H.; Egito, E. S. T.do.; Elaissari, A. Freeze-Drying of Emulsified Systems: A Review. Int. J. Pharm. 2016, 503 (1), 102–114. doi:10.1016/j.ijpharm.2016.02.047
  • Jorge, A.; Kubaski, E. T.; Colmenero, J. C.; Sequinel, T.; Sequinel, R.; Tebcherani, S. M. Analytic Hierarchy Process Applied to the Choice of a Long-Life Tomato (Lycopersicon esculentum Mill) Drying System. Drying Technol. 2015, 33 (10), 1180–1187. doi:10.1080/07373937.2015.1020160
  • Ishwarya, S. P.; Anandharamakrishnan, C.; Stapley, A. G. F. Spray-Freeze-Drying: A Novel Process for the Drying of Foods and Bioproducts. Trends Food Sci. Technol. 2015, 41 (2), 161–181. doi:10.1016/j.tifs.2014.10.008
  • Duan, X.; Yang, X.; Ren, G.; Pang, Y.; Liu, L.; Liu, Y. Technical Aspects in Freeze-Drying of Foods. Drying Technol. 2016, 34 (11), 1271–1285. doi:10.1080/07373937.2015.1099545
  • Minea, V. Overview of Heat-Pump–Assisted Drying Systems, Part II: Data Provided vs. Results Reported. Drying Technol. 2015, 33 (5), 527–540. doi:10.1080/07373937.2014.952378
  • Branger, T.; Bobin, C.; Iroulart, M.-G.; Lépy, M.-C.; Le Garrères, I.; Morelli, S.; Lacour, D.; Plagnard, J. Comparative Study of Two Drying Techniques Used in Radioactive Source Preparation: Freeze-Drying and Evaporation Using Hot Dry Nitrogen Jets. Appl. Radiation Isotopes : Including Data, Instrumentation Methods for Use Agriculture, Ind. Med. 2008, 66 (6–7), 685–90. doi:10.1016/j.apradiso.2008.02.063
  • Rudy, S. Energy Consumption in the Freeze-and Convection-Drying of Garlic. TEKA Kom. Mot. Energ. Roln.-OL PAN 2009, 9, 259–266.
  • Barbosa, J.; Borges, S.; Teixeira, P. Effect of Different Conditions of Growth and Storage on the Cell Counts of Two Lactic Acid Bacteria after Spray Drying in Orange Juice. Beverages 2016, 2 (2), 8. doi:10.3390/beverages2020008
  • Tsubata, K.; Iwami, S.; Hirage, S.; Shitsuka, N. Freeze-Drying System and Freeze-Drying Method, Taylor & Francis, 2014.
  • Cao, X.; Zhang, M.; Fang, Z.; Mujumdar, A. S.; Jiang, H.; Qian, H.; Ai, H. Drying Kinetics and Product Quality of Green Soybean Under Different Microwave Drying Methods. Drying Technol. 2016, 35, 240–248.
  • Wenfeng, S.; Gooneratne, R.; Glithero, N.; Weld, R. J.; Pasco, N. Appraising Freeze-Drying for Storage of Bacteria and Their Ready Access in a Rapid Toxicity Assessment Assay. Appl. Microbiol. Biotechnol. 2013, 97 (23), 10189–10198. doi:10.1007/s00253-013-4706-3
  • Cardona, T. D.; Driscoll, R. H.; Paterson, J. L.; Srzednicki, G. S.; Kim, W. S. Optimizing Conditions for Heat Pump Dehydration of Lactic Acid Bacteria. Drying Technol. 2002, 20 (8), 1611–1632. doi:10.1081/drt-120014054
  • Santivarangkna, C.; Kulozik, U.; Foerst, P. Alternative Drying Processes for the Industrial Preservation of Lactic Acid Starter Cultures. Biotechnol. Prog. 2007, 23 (2), 302–315. doi:10.1021/bp060268f
  • Santivarangkna, C.; Kulozik, U.; Foerst, P. Inactivation Mechanisms of Lactic Acid Starter Cultures Preserved by Drying Processes. J. Appl. Microbiol. 2008, 105 (1), 1–13. doi:10.1111/j.1365-2672.2008.03744.x
  • van de Guchte, M.; Serror, P.; Chervaux, C.; Smokvina, T.; Ehrlich, S. D.; Maguin, E. Stress Responses in Lactic Acid Bacteria. Antonie van Leeuwenhoek 2002, 82 (1/4), 187–216. doi:10.1007/978-94-017-2029-8_12
  • Tymczyszyn, E. E.; Del Rosario Díaz, M.; Gómez-Zavaglia, A.; Disalvo, E. A. Volume Recovery, Surface Properties and Membrane Integrity of Lactobacillus delbrueckii subsp. Bulgaricus Dehydrated in the Presence of Trehalose or Sucrose. J. Appl. Microbiol. 2007, 103 (6), 2410–2419. doi:10.1111/j.1365-2672.2007.03482.x
  • Aljarallah, K. M.; Adams, M. R. Mechanisms of Heat Inactivation in Salmonella serotype Typhimurium as Affected by Low Water Activity at Different Temperatures. J. Appl. Microbiol. 2007, 102 (1), 153–160. doi:10.1111/j.1365-2672.2006.03054.x
  • Lievense, L. C.; Verbreek, M. A. M.; Noomen, A.; van’t Riet, K.. Mechanism of Dehydration Inactivation of Lactobacillus plantarum. Appl. Microbiol. Biotechnol. 1994, 41 (1), 90–94. doi:10.1007/bf00166087
  • García, A. H. Anhydrobiosis in Bacteria: From Physiology to Applications. J. Biosci. 2011, 36 (5), 939–950. doi:10.1007/s12038-011-9107-0
  • Santivarangkna, C.; Aschenbrenner, M.; Kulozik, U.; Foerst, P. Role of Glassy State on Stabilities of Freeze-Dried Probiotics. J. Food Sci. 2011, 76 (8), R152–R156. doi:10.1111/j.1750-3841.2011.02347.x
  • Cross, T. A.; Sharma, M.; Yi, M.; Zhou, H.-X. Influence of Solubilizing Environments on Membrane Protein Structures. Trends Biochem. Sci. 2011, 36 (2), 117–125. doi:10.1016/j.tibs.2010.07.005
  • Orieskova, M.; Kajsik, M.; Szemes, T.; Holy, O.; Forsythe, S.; Turna, J.; Drahovska, H. Contribution of the Thermotolerance Genomic Island to Increased Thermal Tolerance in Cronobacter Strains. Antonie van Leeuwenhoek 2016, 109 (3), 405–414. doi:10.1007/s10482-016-0645-1
  • Donsì, F.; Ferrari, G.; Lenza, E.; Maresca, P. Main Factors Regulating Microbial Inactivation by High-Pressure Homogenization: Operating Parameters and Scale of Operation. Chem. Eng. Sci. 2009, 64 (3), 520–532. doi:10.1016/j.ces.2008.10.002
  • Tahiri, I.; Makhlouf, J.; Paquin, P.; Fliss, I. Inactivation of Food Spoilage Bacteria and Escherichia coli O157:H7 in Phosphate Buffer and Orange Juice Using Dynamic High Pressure. Food Res. Int. 2006, 39 (1), 98–105. doi:10.1016/j.foodres.2005.06.005
  • Smelt, J. P.P.M.; Brul, S. Thermal Inactivation of Microorganisms. Crit. Rev. Food Sci. Nutr. 2014, 54 (10), 1371–1385. doi:10.1080/10408398.2011.637645
  • Lavari, L.; Ianniello, R.; Páez, R.; Zotta, T.; Cuatrin, A.; Reinheimer, J.; Parente, E.; Vinderola, G. Growth of Lactobacillus rhamnosus 64 in Whey Permeate and Study of the Effect of Mild Stresses on Survival to Spray Drying. LWT - Food Sci. Technol. 2015, 63 (1), 322–330. doi:10.1016/j.lwt.2015.03.066
  • Peighambardoust, S. H.; Golshan Tafti, A.; Hesari, J. Application of Spray Drying for Preservation of Lactic Acid Starter Cultures: A Review. Trends Food Sci. Technol. 2011, 22 (5), 215–224. doi:10.1016/j.tifs.2011.01.009
  • Khem, S.; Woo, M. W.; Small, D. M.; Chen, X. D.; May, B. K. Agent Selection and Protective Effects During Single Droplet Drying of Bacteria. Food Chem. 2015, 166, 206–214. doi:10.1016/j.foodchem.2014.06.010
  • Broeckx, G.; Vandenheuvel, D.; Claes, I. J. J.; Lebeer, S.; Kiekens, F. Drying Techniques of Probiotic Bacteria as an Important Step Towards the Development of Novel Pharmabiotics. Int. J. Pharm. 2016, 505 (1), 303–318. doi:10.1016/j.ijpharm.2016.04.002
  • Her, J.-Y.; Kim, M. S.; Lee, K.-G. Preparation of Probiotic Powder by the Spray Freeze-Drying Method. J. Food Eng. 2015, 150, 70–74. doi:10.1016/j.jfoodeng.2014.10.029
  • Nag, A.; Das, S. Improving Ambient Temperature Stability of Probiotics with Stress Adaptation and Fluidized Bed Drying. J. Funct. Foods 2013, 5 (1), 170–177. doi:10.1016/j.jff.2012.10.001
  • Niamnuy, C.; Charoenchaitrakool, M.; Mayachiew, P.; Devahastin, S. Bioactive Compounds and Bioactivities of Centella asiatica (L.) Urban Prepared by Different Drying Methods and Conditions. Drying Technol. 2013, 31 (16), 2007–2015. doi:10.1080/07373937.2013.839563
  • Meng, X. C.; Stanton, C.; Fitzgerald, G. F.; Daly, C.; Ross, R. P. Anhydrobiotics: The Challenges of Drying Probiotic Cultures. Food Chem. 2008, 106 (4), 1406–1416. doi:10.1016/j.foodchem.2007.04.076
  • Terzi, R.; Kadioglu, A.; Kalaycioglu, E.; Saglam, A. Hydrogen Peroxide Pretreatment Induces Osmotic Stress Tolerance by Influencing Osmolyte and Abscisic Acid Levels in Maize Leaves. J. Plant Interact. 2014, 9 (1), 559–565. doi:10.1080/17429145.2013.871077
  • Mylonas, C.; Kouretas, D. Lipid Peroxidation and Tissue Damage. In vivo (Athens, Greece) 1998, 13 (3), 295–309.
  • Corcoran, B. M.; Ross, R. P.; Fitzgerald, G. F.; Stanton, C. Comparative Survival of Probiotic Lactobacilli Spray-Dried in the Presence of Prebiotic Substances. J. Appl. Microbial. 2004, 96 (5), 1024–39. doi:10.1111/j.1365-2672.2004.02219.x
  • Champagne, C. P.; Gardner, N.; Brochu, E.; Beaulieu, Y. The Freeze-Drying of Lactic Acid Bacteria. A Review. Can. Inst. Food Sci. Technol. J. 1991, 24 (3–4), 118–128. doi:10.1016/s0315-5463(91)70034-5
  • Desmond, C.; Stanton, C.; Fitzgerald, G. F.; Collins, K.; Paul Ross, R. Environmental Adaptation of Probiotic Lactobacilli Towards Improvement of Performance During Spray Drying. Int. Dairy J. 2001, 11 (10), 801–808. doi:10.1016/s0958-6946(01)00121-2
  • Teixeira, P.; Castro, H.; Kirby, R. Spray Drying as a Method for Preparing Concentrated Cultures of Lactobacillus bulgaricus. J. Appl. Bacteriol. 1995, 78 (4), 456–462. doi:10.1111/j.1365-2672.1995.tb03433.x
  • Poirier, I.; Maréchal, P.-A.; Gervais, P. Effects of the Kinetics of Water Potential Variation on Bacteria Viability. J. Appl. Microbiol. 1997, 82 (1), 101–106. doi:10.1111/j.1365-2672.1997.tb03303.x
  • Domínguez, J. M.; Drying. in Comprehensive Biotechnology, Elsevier: Pergamon, Greek, 2011; 727–735.
  • To, B. C. S.; Etzel, M. R. Survival of Brevibacterium linens (ATCC 9174) After Spray Drying, Freeze Drying, or Freezing. J. Food Sci. 1997, 62 (1), 167–170. doi:10.1111/j.1365-2621.1997.tb04392.x
  • Schuck, P.; Dolivet, A.; Méjean, S.; Hervé, C.; Jeantet, R. Spray Drying of Dairy Bacteria: New Opportunities to Improve the Viability of Bacteria Powders. Int. Dairy J. 2013, 31 (1), 12–17. doi:10.1016/j.idairyj.2012.01.006
  • Show, K.-Y.; Lee, D.-J. Algal Biomass Dehydration. Bioresour. Technol. 2013, 135, 720–729. doi:10.1016/j.biortech.2012.08.021
  • Munoz-Ibanez, M.; Azagoh, C.; Dubey, B. N.; Dumoulin, E.; Turchiuli, C. Changes in Oil-In-Water Emulsion Size Distribution During the Atomization Step in Spray-Drying Encapsulation. J. Food Eng. 2015, 167, 122–132. doi:10.1016/j.jfoodeng.2015.02.008
  • Boza, Y.; Barbin, D.; Scamparini, R. Effect of Spray-Drying on the Quality of Encapsulated Cells of Beijerinckia sp. Process Biochem. 2004, 39 (10), 1275–1284. doi:10.1016/j.procbio.2003.06.002
  • Ghandi, A.; Powell, I. B.; Howes, T.; Chen, X. D.; Adhikari, B. Effect of Shear Rate and Oxygen Stresses on the Survival of Lactococcus lactis During the Atomization and Drying Stages of Spray Drying: A Laboratory and Pilot Scale Study. J. Food Eng. 2012, 113 (2), 194–200. doi:10.1016/j.jfoodeng.2012.06.005
  • Celik, O. F.; O’Sullivan, D. J. Factors Influencing the Stability of Freeze-Dried Stress-Resilient and Stress-Sensitive Strains of Bifidobacteria. J. Dairy Sci. 2013, 96 (6), 3506–3516. doi:10.3168/jds.2012-6327
  • Ghandi, A.; Powell, I. B.; Broome, M.; Adhikari, B. Survival, Fermentation Activity and Storage Stability of Spray Dried Lactococcus lactis Produced via Different Atomization Regimes. J. Food Eng. 2013, 115 (1), 83–90. doi:10.1016/j.jfoodeng.2012.09.022
  • Shokri, Z.; Fazeli, M. R.; Ardjmand, M.; Mousavi, S. M.; Gilani, K.; Ross, R.; Fitzgerald, G.; Stanton, C.. Factors Affecting Viability of Bifidobacterium Bifidum During Spray Drying. DARU J. Pharm. Sci. 2015, 44 (1), 257–260.
  • Ranadheera, C. S.; Evans, C. A.; Adams, M. C.; Baines, S. K. Microencapsulation of Lactobacillus Acidophilus LA-5, Bifidobacterium animalis subsp. lactis BB-12 and Propionibacterium jensenii 702 by Spray Drying in Goat’s Milk. Small Ruminant Res. 2015, 123, 155–159. doi:10.1016/j.smallrumres.2014.10.012
  • Eratte, D.; Gengenbach, T. R.; Dowling, K.; Barrow, C. J.; Adhikari, B. Survival, Oxidative Stability, and Surface Characteristics of Spray Dried Co-Microcapsules Containing Omega-3 Fatty Acids and Probiotic Bacteria. Drying Technol. 2016, 34 (16), 1926–1935. doi:10.1080/07373937.2016.1141782
  • Filkova, I.; Huang, L. X.; Mujumdar, A. S. Industrial Spray Drying System. In Handbook of Industrial Drying; Mujumdar, A. S., Ed., CRC Press: Boca Raton, 2015; pp 191–226.
  • Çabuk, B.; Harsa, Ş. Whey Protein-Pullulan (WP/Pullulan) Polymer Blend for Preservation of Viability of Lactobacillus acidophilus. Drying Technol. 2015, 33 (10), 1223–1233. doi:10.1080/07373937.2015.1021008
  • Fu, N.; Woo, M. W.; Selomulya, C.; Chen, X. D. Inactivation of Lactococcus lactis ssp. Cremoris Cells in a Droplet During Convective Drying. Biochem. Eng. J. 2013, 79, 46–56. doi:10.1016/j.bej.2013.06.015
  • Fu, W.-Y.; Etzel, M. R. Spray Drying of Lactococcus lactis ssp. lactis C2 and Cellular Injury. J. Food Sci. 1995, 60 (1), 195–200. doi:10.1111/j.1365-2621.1995.tb05636.x
  • Reddy, K. B. P.K.; Madhu, A. N.; Prapulla, S. G. Comparative Survival and Evaluation of Functional Probiotic Properties of Spray-Dried Lactic Acid Bacteria. Int. J. Dairy Technol. 2009, 62 (2), 240–248. doi:10.1111/j.1471-0307.2009.00480.x
  • Martín, M. J.; Lara-Villoslada, F.; Ruiz, M. A.; Morales, M. E. Microencapsulation of Bacteria: A Review of Different Technologies and Their Impact on the Probiotic Effects. Innovative Food Sci. Emerging Technol. 2015, 27, 15–25. doi:10.1016/j.ifset.2014.09.010
  • Filková, I.; Huang, L.; Mujumdar, A. Handbook of Industrial Drying, CRC Press: Boca Raton, 2006; pp 215–255.
  • Zhao, M.; Qu, F.; Cai, S.; Fang, Y.; Nishinari, K.; Phillips, G. O.; Jiang, F. Microencapsulation of Lactobacillus acidophilus CGMCC1.2686: Correlation Between Bacteria Survivability and Physical Properties of Microcapsules. Food Biophysics 2015, 10 (3), 292–299. doi:10.1007/s11483-014-9389-5
  • Schuck, P.; Jeantet, R.; Bhandari, B.; Chen, X. D.; Perrone, Í. T.; de Carvalho, A. F.; Fenelon, M.; Kelly, P. Recent Advances in Spray Drying Relevant to the Dairy Industry: A Comprehensive Critical Review. Drying Technol. 2016, 34 (15), 1773–1790. doi:10.1080/07373937.2016.1233114
  • Palmfeldt, J.; Rådström, P.; Hahn-Hägerdal, B. Optimisation of Initial Cell Concentration Enhances Freeze-Drying Tolerance of Pseudomonas chlororaphis. Cryobiology 2003, 47 (1), 21–29. doi:10.1016/s0011-2240(03)00065-8
  • Ananta, E.; Volkert, M.; Knorr, D. Cellular Injuries and Storage Stability of Spray-Dried Lactobacillus rhamnosus GG. Int. Dairy J. 2005, 15 (4), 399–409. doi:10.1016/j.idairyj.2004.08.004
  • Mansouri, S.; Suriya Hena, V.; Woo, M. W. Narrow Tube Spray Drying. Drying Technol. 2016, 34 (9), 1043–1051. doi:10.1080/07373937.2015.1091355
  • Piatkowski, M.; Taradaichenko, M.; Zbicinski, I. Energy Consumption and Product Quality Interactions in Flame Spray Drying. Drying Technol. 2015, 33 (9), 1022–1028. doi:10.1080/07373937.2014.924137
  • Liu, X.; Lee, D.-J. Some Recent Research and Development in Drying Technologies: Product Perspective. Drying Technol. 2015, 33 (11), 1339–1349. doi:10.1080/07373937.2015.1026986
  • Ju, H.-Y.; Law, C.-L.; Fang, X.-M.; Xiao, H.-W.; Liu, Y.-H.; Gao, Z.-J. Drying Kinetics and Evolution of the Sample’s Core Temperature and Moisture Distribution Of Yam Slices (Dioscorea alata L.) During Convective Hot-Air Drying. Drying Technol. 2016, 34 (11), 1297–1306. doi:10.1080/07373937.2015.1105814
  • Ghandi, A.; Powell, I.; Chen, X. D.; Adhikari, B. Drying Kinetics and Survival Studies of Dairy Fermentation Bacteria in Convective Air Drying Environment Using Single Droplet Drying. J. Food Eng. 2012, 110 (3), 405–417. doi:10.1016/j.jfoodeng.2011.12.031
  • Katechaki, E.; Solomonidis, T.; Bekatorou, A.; Koutinas, A. Thermal Drying of Lactobacillus delbrueckii subsp. Bulgaricus and Its Efficient Use as Starter for Whey Fermentation and Unsalted Cheese Making. Appl. Biochem. Biotechnol. 2010, 162 (5), 1270–1285. doi:10.1007/s12010-009-8904-5
  • Friesen, T.; Hill, G.; Pugsley, T.; Holloway, G.; Zimmerman, D. Experimental Determination of Viability Loss of Penicillium bilaiae Conidia During Convective Air-Drying. Appl. Microbiol. Biotechnol. 2005, 68 (3), 397–404. doi:10.1007/s00253-004-1866-1
  • Chandralekha, A.; Rani, A.; Tavanandi, H. A.; Amrutha, N.; Hebbar, U.; Raghavarao, K.. Role of Carrier Material in Encapsulation of Yeast (Saccharomyces cerevisiae) by Spray Drying. Drying Technol. 2016, 35, 1029–1042.
  • Erbay, Z.; Hepbasli, A.. Exergoeconomic Evaluation of a Ground-Source Heat Pump Food Dryer at Varying Dead State Temperatures. J. Cleaner Production 2016, 142, 1425–1435.
  • Skogseth, H.; Eikvik, T.; Tvedt, K. E.; Strømmen, I.; Larsson, E.; Halgunset, J. Can Drying Be an Alternative Tissue Preservation Method in Cancer Research Biobanking? Drying Technol. 2014, 32 (6), 713–719.
  • Chua, K. J.; Chou, S. K. New Hybrid Drying Technologies. In Emerging Technologies for Food Processing; Rakesh, K. Singh, ed.; Elsevier Ltd: Singapore, 2005; pp 0–12.
  • Minea, V. Heat-Pump–Assisted Drying: Recent Technological Advances and R&D Needs. Drying Technol. 2013, 31 (10), 1177–1189.
  • Minea, V. Advances in Heat Pump-Assisted Drying Technology; CRC Press: Boca Raton, 2016.
  • Gan, S. H.; Ong, S. P.; Chin, N. L.; Law, C. L. A comparative Quality Study and Energy Saving on Intermittent Heat Pump Drying of Malaysian Edible Bird’s Nest. Drying Technol. 2016, 35, 1–11.
  • Barbosa de Lima, A. G.; da Silva, J. V.; Pereira, E. M. A.; dos Santos, I. B.; de Lima, W. M. P.B. Drying of Bioproducts: Quality and Energy Aspects. Springer Int. Pub. 2016, 63, 1–18.
  • Liu, B.; Zhou, X. Freeze-Drying of Proteins. In Cryopreservation and Freeze-Drying Protocols; Wolkers, W. F., Oldenhof, H., Eds.; Springer New York, New York, NY, 2015; pp 459–476.
  • Strommen, I.; Song, X.; Kramer, M. The Application of Heat Pump in Low Temperature Drying. In Heat Pumps for Energy Efficiency and Environmental Progress; Bosma, J., ed.; 1993, pp 341–348.
  • Chin, S.; Law, C. Maximizing the Retention of Ganoderic Acids and Water-Soluble Polysaccharides Content of Ganoderma lucidum Using Two-Stage Dehydration Method. Drying Technol. 2014, 32 (6), 644–656. doi:10.1080/07373937.2013.850434
  • Alves-Filho, M.; Stranmen, I. The Application of Heat Pump in Drying of Biomaterials. Drying Technol. 1996, 14 (9), 2061–2090. doi:10.1080/07373939608917196
  • Ghandi, A.; Powell, I. B.; Chen, X. D.; Adhikari, B. The Survival of Lactococcus lactis in a Convective-Air-Drying Environment: The Role of Protectant Solids, Oxygen Injury, and Mechanism of Protection. Drying Technol. 2013, 31 (13–14), 1661–1674. doi:10.1080/07373937.2013.793702
  • Ghandi, A.; Powell, I. B.; Chen, X. D.; Adhikari, B. The Effect of Dryer Inlet and Outlet Air Temperatures and Protectant Solids on the Survival of Lactococcus lactis during Spray Drying. Drying Technol. 2012, 30 (14), 1649–1657. doi:10.1080/07373937.2012.703743
  • Hutter, W.; Werner, L.; Peter, J.; Hampel, W. Spray Drying of the Dehalogenating Bacterium Rhodococcus sp. Bioprocess Eng. 1995, 13 (1), 19–21. doi:10.1007/s004490050129
  • Golowczyc, M. A.; Silva, J.; Abraham, A. G.; De Antoni, G. L.; Teixeira, P. Preservation of Probiotic Strains Isolated from Kefir by Spray Drying. Lett. Appl. Microbiol. 2010, 50 (1), 7–12. doi:10.1111/j.1472-765x.2009.02759.x
  • Linders, L. J. M.; Meerdink, G.; Van’t Riet, K. Effect of Growth Parameters on the Residual Activity of Lactobacillus plantarum After Drying. J. Appl. Microbiol. 1997, 82 (6), 683–688. doi:10.1046/j.1365-2672.1997.00183.x
  • Dimitrellou, D.; Tsaousi, K.; Kourkoutas, Y.; Panas, P.; Kanellaki, M.; Koutinas, A. A. Fermentation Efficiency of Thermally Dried Immobilized Kefir on Casein as Starter Culture. Process Biochem. 2008, 43 (12), 1323–1329. doi:10.1016/j.procbio.2008.07.017
  • Girardin, S. E.; Boneca, I. G.; Carneiro, L. A. M.; Antignac, A.; Jéhanno, M.; Viala, J.; Tedin, K.; Taha, M.-K.; Labigne, A.; Zäthringer, U.; et al. Nod1 Detects a Unique Muropeptide from Gram-Negative Bacterial Peptidoglycan. Sci. 2003, 300 (5625), 1584–1587.
  • Stevens, K. A.; Sheldon, B. W.; Klapes, N. A.; Klaenhammer, T. R. Nisin Treatment for Inactivation of Salmonella Species and Other Gram-Negative Bacteria. Appl. Environ. Microbiol. 1991, 57 (12), 3613–3615.
  • Poirier, D. What to Consider When Selecting a Convection Dryer. Powder and Bulk Engineering, 2013, (April).
  • Kiranoudis, C. T.; Maroulis, Z. B.; Marinos-Kouris, D. Design and Operation of Convective Industrial Dryers. AIChE J. 1996, 42 (11), 3030–3040. doi:10.1002/aic.690421105
  • Bensch, G.; Rüger, M.; Wassermann, M.; Weinholz, S.; Reichl, U.; Cordes, C. Flow Cytometric Viability Assessment of Lactic Acid Bacteria Starter Cultures Produced by Fluidized Bed Drying. Appl. Microbiol. Biotechnol. 2014, 98 (11), 4897–4909. doi:10.1007/s00253-014-5592-z
  • Erbay, Z.; Hepbasli, A. Advanced Exergy Analysis of a Heat Pump Drying System Used in Food Drying. Drying Technol. 2013, 31 (7), 802–810. doi:10.1080/07373937.2012.763044
  • Aghbashlo, M.; Hosseinpour, S.; Mujumdar, A. S. Application of Artificial Neural Networks (ANNs) in Drying Technology: A Comprehensive Review. Drying Technol. 2015, 33 (12), 1397–1462. doi:10.1080/07373937.2015.1036288
  • Simpson, P. J.; Stanton, C.; Fitzgerald, G. F.; Ross, R. P. Intrinsic Tolerance of Bifidobacterium species to Heat and Oxygen and Survival Following Spray Drying and Storage. J. Appl. Microbiol. 2005, 99 (3), 493–501. doi:10.1111/j.1365-2672.2005.02648.x
  • Hesseltine, C. W. Applications of Biotechnology in Traditional Fermented Foods; National Academies Press: Washington, DC, 1992.
  • Khor, W. C.; Roume, H.; Coma, M.; Vervaeren, H.; Rabaey, K. Acetate Accumulation Enhances Mixed Culture Fermentation of Biomass to Lactic Acid. Appl. Microbiol. Biotechnol. 2016, 100 (19), 8337–8348. doi:10.1007/s00253-016-7578-5
  • Lonkar, S.; Fu, Z.; Holtzapple, M. Optimum Alcohol Concentration for Chain Elongation in Mixed-Culture Fermentation of Cellulosic Substrate. Biotechnol. Bioeng. 2016, 113 (12), 2597–2604. doi:10.1002/bit.26024
  • Castro, H.; Queirolo, M.; Quevedo, M.; Muxí, L. Preservation Methods for the Storage of Anaerobic Sludges. Biotechnol. Lett. 2002, 24 (4), 329–333.
  • Wang, Y.-C.; Yu, R.-C.; Chou, C.-C. Viability of Lactic Acid Bacteria and Bifidobacteria in Fermented Soymilk after Drying, Subsequent Rehydration and Storage. Int. J. Food Microbiol. 2004, 93 (2), 209–217. doi:10.1016/j.ijfoodmicro.2003.12.001
  • Efstathiou, J. D.; McKay, L. L.; Morris, H. A.; Zottola, E. A. Growth and Preservation Parameters for Preparation of a Mixed Species Culture Concentrate for Cheese Manufacture. J. Milk and Food Technol. 1975, 38 (8), 444–448. doi:10.4315/0022-2747-38.8.444
  • Batstone, D. J.; Virdis, B. The Role of Anaerobic Digestion in the Emerging Energy Economy. Curr. Opin. Biotechnol. 2014, 27, 142–149. doi:10.1016/j.copbio.2014.01.013
  • Ong, S.-A.; Toorisaka, E.; Hirata, M.; Hano, T. Decolorization of azo dye (Orange II) in a Sequential UASB–SBR System. Sep. Purif Technol. 2005, 42, 297–302.
  • Şen, S.; Demirer, G.. Anaerobic Treatment of Real Textile Wastewater with a Fluidized Bed Reactor. Water Res. 2003, 37 (8), 1868–1878. doi:10.1016/s0043-1354(02)00577-8
  • Yu, L.; Zhang, X.-Y.; Wang, S.; Tang, Q.-W.; Xie, T.; Lei, N.-Y.; Chen, Y.-L.; Qiao, W.-C.; Li, W.-W.; Lam, M. H.-W. Microbial Community Structure Associated with Treatment of Azo Dye in a Start-Up Anaerobic Sequenced Batch Reactor. J. Taiwan Inst. Chem. Eng. 2015, 54, 118–124. doi:10.1016/j.jtice.2015.03.012
  • Grimberg, S. J.; Hilderbrandt, D.; Kinnunen, M.; Rogers, S. Anaerobic Digestion of Food Waste Through the Operation of a Mesophilic Two-Phase Pilot Scale Digester – Assessment of Variable Loadings on System Performance. Bioresour. Technol. 2015, 178, 226–229. doi:10.1016/j.biortech.2014.09.001
  • Kundu, K.; Sharma, S.; Sreekrishnan, T. R. Changes in Microbial Communities in a Hybrid Anaerobic Reactor with Organic Loading Rate and Temperature. Bioresour. Technol. 2013, 129, 538–547. doi:10.1016/j.biortech.2012.11.118
  • Fernández, M.; Ramírez, M.; Pérez, R. M.; Gómez, J. M.; Cantero, D. Hydrogen Sulphide Removal from Biogas by an Anoxic Biotrickling Filter Packed with Pall Rings. Chem. Eng. J. 2013, 225, 456–463. doi:10.1016/j.cej.2013.04.020
  • Castellani, B.; Rossi, F.; Filipponi, M.; Nicolini, A. Hydrate-Based Removal of Carbon Dioxide and Hydrogen Sulphide from Biogas Mixtures: Experimental Investigation and Energy Evaluations. Biomass Bioenergy 2014, 70, 330–338. doi:10.1016/j.biombioe.2014.08.026
  • Cappuccino, J. G.; Sherman, N. Microbiology: A Laboratory Manual, 7th ed.; Pearson/Benjamin Cummings: San Francisco, 2005.
  • Hong, K.; Gao, A. A.-H.; Xie, Q.-Y. Q.; Gao, H. H. G.; Zhuang, L.; Lin, H.-P.; Yu, H.-P.; Li, J.; Yao, X.-S.; Goodfellow, M.; et al. Actinomycetes for Marine Drug Discovery Isolated from Mangrove Soils and Plants in China. Marine Drugs 2009, 7 (1), 24–44. doi:10.3390/md7010024
  • Thompson, J. The CLUSTAL_X Windows Interface: Flexible Strategies for Multiple Sequence Alignment Aided by Quality Analysis Tools. Nucleic Acids Res. 1997, 25 (24), 4876–4882.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.