Publication Cover
Drying Technology
An International Journal
Volume 36, 2018 - Issue 7
199
Views
11
CrossRef citations to date
0
Altmetric
ARTICLES

Enhancing dewaterability of sewage sludge by the application of tween-20 during bioleaching: Performance evaluation and mechanistic study

, , , , , & show all
Pages 780-789 | Received 24 Apr 2017, Accepted 12 Jul 2017, Published online: 17 Oct 2017

References

  • Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Marinas, B. J.; Mates, A. M. Science and Technology for Water Purification in the Coming Decades. Nature 2008, 452(7185), 301–310.
  • Perazzini, H.; Freire, F. B.; Freire, J. T. Thermal Treatment of Solid Wastes Using Drying Technologies: A Review. Drying Technol. 2016, 34(1), 39–52. doi:10.1080/07373937.2014.995803
  • Rulkens, W. H.; Bien, J. D. Recovery of Energy from Sludge-Comparison of the Various Options. Water Sci. Technol. 2004, 50(9), 213–221.
  • Peeters, B. Mechanical Dewatering and Thermal Drying of Sludge in a Single Apparatus. Drying Technol. 2010, 28(4), 454–459. doi:10.1080/07373930903155614
  • Chen, W. Optimization of Sludge Dewatering Through Pretreatment, Equipment Selection, and Testing. Drying Technol. 2013, 31(2), 193–201. doi:10.1080/07373937.2012.723658
  • Mohammadi, Z.; Azhdarpoor, A.; Dehghani, M. Stabilization and Dewatering of Wastewater Treatment Plant Sludge using Combined Bio/Fenton-Like Oxidation Process. Drying Technol. 2017, 35(4), 545–552. doi:10.1080/07373937.2016.1190938
  • Liu, F. W.; Zhou, J.; Wang, D. Z.; Zhou, L. X. Enhancing Sewage Sludge Dewaterability by Bioleaching Approach with Comparison to Other Physical and Chemical Conditioning Methods. J. Environ. Sci. 2012, 24(8), 1403–1410. doi:10.1016/s1001-0742(11)60958-3
  • Liu, F. W.; Zhou, L. X.; Zhou, J.; Song, X. W.; Wang, D. Z. Improvement of Sludge Dewaterability and Removal of Sludge-Borne Metals by Bioleaching at Optimum pH. J. Hazard. Mater. 2012, 221, 170–177. doi:10.1016/j.jhazmat.2012.04.028
  • Wang, S. M.; Zheng, G. Y.; Zhou, L. X. Heterotrophic Microorganism Rhodotorula mucilaginosa R30 Improves Tannery Sludge Bioleaching Through Elevating Dissolved CO2 and Extracellular Polymeric Substances Levels in Bioleach Solution as Well as Scavenging Toxic DOM to Acidithiobacillus Species. Water Res. 2010, 44(18), 5423–5431. doi:10.1016/j.watres.2010.06.055
  • Pathak, A.; Dastidar, M. G.; Sreekrishnan, T. R. Bioleaching of Heavy Metals from Sewage Sludge: A Review. J. Environ. Manage. 2009, 90(8), 2343–2353. doi:10.1016/j.jenvman.2008.11.005
  • Pradhan, N.; Nathsarma, K. C.; Rao, K. S.; Sukla, L. B.; Mishra, B. K. Heap Bioleaching of Chalcopyrite: A Review. Miner. Eng. 2008, 21(5), 355–365. doi:10.1016/j.mineng.2007.10.018
  • Rawlings, D. E.; Johnson, D. B. The Microbiology of Biomining: Development and Optimization of Mineral-Oxidizing Microbial Consortia. Microbiology-SGM 2007, 153, 315–324. doi:10.1099/mic.0.2006/001206-0
  • Agate, A. D.; Korzybski, M. S.; Lundgren, D. G. Extracellular Complex from the Culture Filtrate of Ferrobacillus ferrooxidans. Can. J. Microbiol. 1969, 15(3), 259–264. doi:10.1139/m69-048
  • Jaime, A. S.; Gladys, H.; Blanca, E.; Tómas, V.; Ricardo, B. O.; Jorge, R. Interfacial Phenomena Affecting the Adhesion of Thiobacillus ferrooxidans to Sulphide Mineral Surface. Colloids Surf. 1992, 69, 159–166. doi:10.1016/0166-6622(92)80227-s
  • Kelly, D. P. Biochemistry of the Chemolithotrophic Oxidation of Inorganic Sulphur. Philos. Trans. R. Soc. London B 1982, 298(1093), 499–528. doi:10.1098/rstb.1982.0094
  • Zhang, P. Y.; Zhu, Y.; Zhang, G. M.; Zou, S.; Zeng, G. M.; Wu, Z. Sewage Sludge Bioleaching by Indigenous Sulfur-Oxidizing Bacteria: Effects of Ratio of Substrate Dosage to Solid Content. Bioresour. Technol. 2009, 100(3), 1394–1398. doi:10.1016/j.biortech.2008.09.006
  • Seidel, H.; Enrich, R.; Hoffmann, P.; Loser, C. Effect of Different Types of Elemental Sulfur on Bioleaching of Heavy Metals from Contaminated Sediments. Chemosphere 2006, 62(9), 1444–1453. doi:10.1016/j.chemosphere.2005.06.003
  • Eskandani, M.; Hamishehkar, H.; Dolatabadi, J. E. N. Cyto/Genotoxicity Study of Polyoxyethylene (20) Sorbitan Monolaurate (Tween-20). DNA Cell Biol. 2013, 32, 498–503.
  • Rubio, A. Bioleaching Capacity of an Extremely Thermophilic Culture for Chalcopy Rite Materials. Miner Eng. 2002, 15, 689–694. doi:10.1016/s0892-6875(02)00124-3
  • Zhou, J.; Zheng, G. Y.; Wong, J. W. C.; Zhou, L. X. Degradation of Inhibitory Substances in Sludge by Galactomyces sp. Z3 and the Role of its Extracellular Polymeric Substances in Improving Bioleaching. Bioresour. Technol. 2013, 132, 217–223. doi:10.1016/j.biortech.2012.12.179
  • Wang, J. P.; Yuan, S. J.; Wang, Y.; Yu, H. Q. Synthesis, Characterization and Application of a Novel Starch-Based Flocculant with High Flocculation and Dewatering Properties. Water Res. 2013, 47(8), 2643–2648. doi:10.1016/j.watres.2013.01.050
  • Hong, C.; Wang, Z. Q.; Si, Y. X.; Yang, Q.; Xing, Y. Improving Sludge Dewaterability by Combined Conditioning with Fenton’s Reagent and Surfactant. Appl. Microbiol. Biotechnol. 2016, 101(2), 809–816. doi:10.1007/s00253-016-7939-0
  • Zheng, G. Y.; Wang, Z. Y.; Wang, D. Z.; Zhou, L. X. Enhancement of Sludge Dewaterability by Sequential Inoculation of Filamentous Fungus Mucor circinelloides ZG-3 and Acidithiobacillus ferrooxidans LX5. Chem. Eng. J. 2015, 284, 216–223. doi:10.1016/j.cej.2015.08.119
  • Feng, X.; Deng, J. C.; Lei, H. Y.; Bai, T.; Fan, Q. J.; Li, Z. X. Dewaterability of Waste Activated Sludge with Ultrasound Conditioning. Bioresour. Technol. 2009, 100(3), 1074–1081.
  • Fang, D.; Zhou, L. X. Effect of Sludge Dissolved Organic Matter on Oxidation of Ferrous Iron and Sulfur by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Water Air Soil Pollut. 2006, 171(1–4), 81–94. doi:10.1007/s11270-005-9014-9
  • Zhou, L. X.; Fang, D.; Wang, S. M.; Wong, J. W. C.; Wang, D. Z. Bioleaching of Cr from Tannery Sludge: The Effects of Initial Acid Addition and Recycling of Acidified Bioleached Sludge. Environ. Technol. 2005, 26(3), 277–284. doi:10.1080/09593332608618558
  • Lazaroff, N.; Sigal, W.; Wasserman, A. Iron Oxidation and Precipitation of Ferric Hydroxysulfates by Resting Thiobacillus ferrooxidans Cells. Appl. Environ. Microbiol. 1982, 43(3), 924–938.
  • Liu, Y. G.; Zhou, M.; Zeng, G. M.; Wang, X.; Li, X.; Fan, T.; Xu, W. H. Bioleaching of Heavy Metals from Mine Tailings by Indigenous Sulfur-Oxidizing Bacteria: Effects of Substrate Concentration. Bioresour. Technol. 2008, 99(10), 4124–4129. doi:10.1016/j.biortech.2007.08.064
  • Semblante, G. U.; Hai, F. I.; Ngo, H. H.; Guo, W. S.; You, S. J.; Price, W. E.; Nghiem, L. D. Sludge Cycling Between Aerobic, Anoxic and Anaerobic Regimes to Reduce Sludge Production During Wastewater Treatment: Performance, Mechanisms, and Implications. Bioresour. Technol. 155, 395–409.
  • Chen, Y. X.; Hua, Y. M.; Zhang, S. H.; Tian, G. M. Transformation of Heavy Metal Forms During Sewage Sludge Bioleaching. J. Hazard. Mater. 2005, 123, 196–202. doi:10.1016/j.jhazmat.2005.03.047
  • Liao, Y. H.; Zhou, L. X.; Bai, S. Y.; Liang, J. R.; Wang, S. M. Occurrence of Biogenic Schwertmannite in Sludge Bioleaching Environments and its Adverse Effect on Solubilization of Sludge-Borne Metals. Appl. Geochem. 24, 1739–1746.
  • Zhao, L.; Gu, W. M.; Shao, L. M.; He, P. J. Sludge Bio-Drying Process at Low Ambient Temperature: Effect of Bulking Agent Particle Size and Controlled Temperature. Drying Technol. 2012, 30, 1037–1044. doi:10.1080/07373937.2012.665113
  • Chen, C. Y.; Zhang, P. Y.; Zeng, G. M.; Deng, J. H.; Zhou, Y.; Lu, H. F. Sewage Sludge Conditioning with Coal Fly Ash Modified by Sulfuric Acid. Chem. Eng. J. 2010, 158, 616–622. doi:10.1016/j.cej.2010.02.021
  • Song, X. W.; Zhou, L. X. The Influence of Bioleaching on Dewaterability of Municipal Sewage Sludge. Acta Sci. Circumstantiae 2008, 28, 2012–2017.
  • Steiner, M. R.; Lazaroff, N. Direct Method for Continuous Determination of Iron Oxidation by Autotrophic Bacteria. Appl. Microbiol. 1974, 28, 872–880.
  • Zhou, S. G.; Zhou, L. X.; Fang, D. Enhancing Metal Removal by Co-Addition of Fe2+ and S0 as Substrates of Acidithiobacillus ferrooxidans for Sewage Sludge Bioleaching. Pract. Period. Hazard. Toxic Radioact. Waste Manag. 2008, 12, 159–164. doi:10.1061/(asce)1090-025x(2008)12:3(159)
  • Chen, S. Y.; Lin, J. G. Bioleaching of Heavy Metals from Livestock Sludge by Indigenous Sulfur-Oxidizing Bacteria: Effects of Sludge Solids Concentration. Chemosphere 2004, 54, 283–289. doi:10.1016/j.chemosphere.2003.08.009
  • Tuttle, J. H.; Dugan, P. R. Inhibition of Growth, Iron, and Sulfur Oxidation in Thiobacillus ferrooxidans by Simple Organic Compounds. Can. J. Microbiol. 1976, 22, 719–730. doi:10.1139/m76-105
  • Xiong, H. X.; Liao, Y. H.; Zhou, L. X. Influence of Chloride and Sulfate on Formation of Akaganeite and Schwertmannite through Ferrous Biooxidation by Acidithiobacillus ferrooxidans Cells. Environ. Sci. Technol. 2008, 42, 8681–8686. doi:10.1021/es801646j
  • Saveyn, H.; Pauwels, G.; Timmerman, R.; Meeren, P. V. Effect of Polyelectrolyte Conditioning on the Enhanced Dewatering of Activated Sludge by Application of an Electric Field During the Expression Phase. Water Res. 2005, 39, 3012–3020 doi:10.1016/j.watres.2005.05.002
  • Zhou, J.; Zheng, G. Y.; Zhang, X. Y.; Zhou, L. X. Influences of Extracellular Polymeric Substances on the Dewaterability of Sewage Sludge During Bioleaching. PLoS One 2014, 9, e102688. doi:10.1371/journal.pone.0102688
  • Xu, H.; Ding, T. G. Influence of Vacuum Pressure, pH, and Potential Gradient on the Vacuum Electro-Osmosis Dewatering of Drinking Water Treatment Sludge. Drying Technol. 2016, 34, 1107–1117. doi:10.1080/07373937.2015.1095203

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.