Publication Cover
Drying Technology
An International Journal
Volume 36, 2018 - Issue 8
569
Views
32
CrossRef citations to date
0
Altmetric
ARTICLES

Pulsed vacuum drying (PVD) technology improves drying efficiency and quality of Poria cubes

, , , , &
Pages 908-921 | Received 21 May 2017, Accepted 27 Jul 2017, Published online: 20 Oct 2017

References

  • Huang, Q.; Jin, Y.; Zhang, L.; Cheung, P. C. K.; Kennedy, J. F. Structure, Molecular Size and Antitumor Activities of Polysaccharides from Poria cocos Mycelia Produced in Fermenter. Carbohydr. Polym. 2007, 70(3), 324–333. DOI:10.1016/j.carbpol.2007.04.015.
  • Xie, L.; Mujumdar, A. S.; Xiao, H. W.; Gao, Z. J. Chapter 4: Recent Technologies and Trends in Medicinal Herb Drying. In Drying Technologies for Foods: Fundamentals & Applications (Part II); Nema, P. K., Kaur, B. P., Mujumdar, A. S., Eds.; New India Publishing Agency: New Delhi, India, 2016; pp 69–90.
  • Wang, B.; Zhang, Y.; Venkitasamy, C.; Wu, B.; Pan, Z.; Ma, H. Effect of Pulsed Light on Activity and Structural Changes of Horseradish Peroxidase. Food Chem. 2017, 234, 20–25.
  • Wang, T.; Khir, R.; Pan, Z.; Yuan, Q. Simultaneous Rough Rice Drying and Rice Bran Stabilization using Infrared Radiation Heating. LWT-Food Sci. Technol. 2017, 78, 281–288. DOI:10.1016/j.lwt.2016.12.041.
  • Wang, D.; Dai, J. W.; Ju, H. Y.; Xie, L.; Xiao, H. W.; Liu, Y. H.; Gao, Z. J. Drying Kinetics of American Ginseng Slices in Thin-Layer Air Impingement Dryer. Int. J. Food Eng. 2015, 11(5), 701–711. DOI:10.1016/j.fbp.2014.08.008.
  • Xiao, H. W.; Pang, C. L.; Wang, L. H.; Bai, J. W.; Yang, W. X.; Gao, Z. J. Drying Kinetics and Quality of Monukka Seedless Grapes Dried in an Air-Impingement Jet Dryer. Biosyst. Eng. 2010, 105(2), 233–240. DOI:10.1016/j.biosystemseng.2009.11.001.
  • Zhang, W.; Hama, Y.; Na, S. H. Drying Shrinkage and Microstructure Characteristics of Mortar Incorporating Ground Granulated Blast Furnace Slag and Shrinkage Reducing Admixture. Construct. Build. Mater. 2015, 93, 267–277. DOI:10.1016/j.conbuildmat.2015.05.103.
  • Zielinska, M.; Markowski, M. The Influence of Microwave-Assisted Drying Techniques on the Rehydration Behavior of Blueberries (Vaccinium corymbosum L.). Food Chem. 2016, 196, 1188–1196. DOI:10.1016/j.foodchem.2015.10.054.
  • Chua, K. J.; Chou, S. K. On the Experimental Study of a Pressure Regulatory System for Bioproducts Dehydration. J. Food Eng. 2004, 62(2), 151–158. DOI:10.1016/s0260-8774(03)00226-7.
  • Mounir, S.; Allaf, T.; Mujumdar, A. S.; Allaf, K. Swell Drying: Coupling Instant Controlled Pressure Drop DIC to Standard Convection Drying Processes to Intensify Transfer Phenomena and Improve Quality—An Overview. Drying Technol. 2012, 30(14), 1508–1531. DOI:10.1080/07373937.2012.693145.
  • Zielinska, M.; Sadowski, P.; Blaszczak, W. Combined Hot Air Convective Drying and Microwave-Vacuum Drying of Blueberries (Vaccinium corymbosum L.): Drying Kinetics and Quality Characteristics. Drying Technol. 2016, 34, 665–684. DOI:10.1080/07373937.2015.1070358.
  • Moreno, J.; Gonzales, M.; Zúñiga, P.; Petzold, G.; Mella, K.; Muñoz, O. Ohmic Heating and Pulsed Vacuum Effect on Dehydration Processes and Polyphenol Component Retention of Osmo Dehydrated Blueberries (cv. Tifblue). Innov. Food Sci. Emerg. Technol. 2016, 36, 112–119. DOI:10.1016/j.ifset.2016.06.005.
  • Witrowa-Rajchert, D.; Wiktor, A.; Sledz, M.; Nowacka, M. Selected Emerging Technologies to Enhance the Drying Process: A Review. Drying Technol. 2014, 32, 1386–1396. DOI:10.1080/07373937.2014.903412.
  • Xie, L.; Mujumdar, A. S.; Fang, X.; Wang, J.; Dai, J.; Du, Z.; Xiao, H.; Liu, Y.; Gao, Z. Far-Infrared Radiation Heating Assisted Pulsed Vacuum Drying (FIR-PVD) of Wolfberry (Lycium barbarum L.): Effects on Drying Kinetics and Quality Attributes. Food Bioprod. Process. 2017, 102, 320–331. DOI:10.1016/j.fbp.2017.01.012.
  • Xie, Y.; Gao, Z.; Liu, Y.; Xiao, H. Pulsed Vacuum Drying of Rhizoma Dioscoreae Slices. LWT-Food Sci. Technol. 2017, 80, 237–249. DOI:10.1016/j.lwt.2017.02.016.
  • Bai, J.; Wang, J.; Xiao, H.; Ju, H.; Liu, Y.; Gao, Z. Weibull Distribution for Modeling Drying of Grapes and its Application. Trans. Chin. Soc. Agric. Eng. 2013, 29(16), 278–285. DOI:10.3724/sp.j.1087.2013.01085.
  • Albitar, N.; Mounir, S.; Besombes, C.; Allaf, K. Improving the Drying of Onion Using the Instant Controlled Pressure Drop Technology. Drying Technol. 2011, 29, 993–1001. DOI:10.1080/07373937.2010.507912.
  • Mayor, L.; Sereno, A. M. Modelling Shrinkage During Convective Drying of Food Materials: A Review. J. Food Eng. 2004, 61(3), 373–386. DOI:10.1016/s0260-8774(03)00144-4.
  • Dincer, I.; Hussain, M. M.; Yilbas, B. S.; Sahin, A. Z. Development of a New Drying Correlation for Practical Applications. Int. J. Energy Res. 2002, 26(3), 245–251. DOI:10.1002/er.779.abs.
  • Dincer, I.; Hussain, M. M.; Sahin, A. Z.; Yilbas, B. S. Development of a New Moisture Transfer (Bi–Re) Correlation for Food Drying Applications. Int. J. Heat Mass Transfer 2002, 45(8), 1749–1755. DOI:10.1016/s0017-9310(01)00272-1.
  • Goula, A. M.; Chasekioglou, A. N.; Lazarides, H. N. Drying and Shrinkage Kinetics of Solid Waste of Olive Oil Processing. Drying Technol. 2015, 33, 1728–1738. DOI:10.1080/07373937.2015.1026983.
  • Mancuhan, E.; Zen, S.; Sayan, P.; Sargut, S. T. Experimental Investigation of Green Brick Shrinkage Behavior with Bigot’s Curves. Drying Technol. 2016, 34(13), 1535–1545. DOI:10.1080/07373937.2015.1135340.
  • Cong, D. T.; Haddad, M. A.; Rezzoug, Z.; Lefevre, L.; Allaf, K. Dehydration by Successive Pressure Drops for Drying Paddy Rice Treated by Instant Controlled Pressure Drop. Drying Technol. 2008, 26, 443–451. DOI:10.1080/07373930801929300.
  • AOAC (No.934.16). Official Methods of Analysis, 16th ed., Association of Official Analytical Chemists: Washington, DC, USA, 1995.
  • Sturm, B.; Nunez Vega, A.; Hofacker, W. C. Influence of Process Control Strategies on Drying Kinetics, Color and Shrinkage of Air Dried Apples. Appl. Therm. Eng. 2014, 62(2), 455–460. DOI:10.1016/j.applthermaleng.2013.09.056.
  • Xiao, H.; Bai, J.; Xie, L.; Sun, D.; Gao, Z. Thin-Layer Air Impingement Drying Enhances Drying Rate of American Ginseng (Panax quinquefolium L.) Slices with Quality Attributes Considered. Food Bioprod. Process. 2015, 94, 581–591. DOI:10.1016/j.fbp.2014.08.008.
  • Fernandes, F. A. N.; Rodrigues, S.; Garcíapérez, J. V.; Cárcel, J. A. Effects of Ultrasound-Assisted Air Drying on Vitamins and Carotenoids of Cherry Tomatoes. Drying Technol. 2015, 34, 986–996. DOI:10.1080/07373937.2015.1090445.
  • Ju, H.; Law, C.; Fang, X.; Xiao, H.; Liu, Y.; Gao, Z. Drying Kinetics and Evolution of Sample’s Core Temperature and Moisture Distribution of Yam Slices (Dioscorea alata L.) During Convective Hot Air Drying. Drying Technol. 2016, 34(11), 1297–1306. DOI:10.1080/07373937.2015.1105814.
  • Dai, J.; Rao, J.; Wang, D.; Xie, L.; Xiao, H.; Liu, Y.; Gao, Z. Process-Based Drying Temperature and Humidity Integration Control Enhances Drying Kinetics of Apricot Halves. Drying Technol. 2015, 33(3), 365–376. DOI:10.1080/07373937.2014.954667.
  • Tomislav, J.; Branko, T. Biot Number-Lag Factor (Bi-G) Correlation for Tunnel Drying of Baby Food. Afr. J. Biotechnol. 2011, 10(59), 12676. DOI:10.5897/ajb11.112.
  • Mrkić, V.; Ukrainczyk, M.; Tripalo, B. Applicability of Moisture Transfer Bi–Di Correlation for Convective Drying of Broccoli. J. Food Eng. 2007, 79(2), 640–646. DOI:10.1016/j.jfoodeng.2006.01.078.
  • McMinn, W. A. M. Prediction of Moisture Transfer Parameters for Microwave Drying of Lactose Powder using Bi–G Drying Correlation. Food Res. Int. 2004, 37(10), 1041–1047. DOI:10.1016/j.foodres.2004.06.013.
  • McMinn, W. A. M.; Khraisheh, M. A. M.; Magee, T. R. A. Modelling the Mass Transfer During Convective, Microwave and Combined Microwave-Convective Drying of Solid Slabs and Cylinders. Food Res. Int. 2003, 36(9–10), 977–983. DOI:10.1016/s0963-9969(03)00118-2.
  • AOAC (No.998.12). Official Methods of Analysis, 16th ed., Association of Official Analytical Chemists: Washington, DC, USA, 1995.
  • Hayati, S. N.; Rosyida, V. T.; Apriyana, W.; Darsih, C.; Poeloengasih, C. D.; Hernawan. Effects of Different Drying Techniques on the Water-Soluble Polysaccharides Content and Antioxidant Activities of Ganoderma lucidum Karst. AIP Conference Proceedings, 2016; 1755(1), p. 130004. DOI:10.1063/1.4958548.
  • Venkitasamy, C.; Brandl, M. T.; Wang, B.; McHugh, T. H. Drying and Decontamination of Raw Pistachios with Sequential Infrared Drying, Tempering and Hot Air Drying. Drying Technol. 2017, 246, 85–91. DOI:10.1016/j.ijfoodmicro.2017.02.005.
  • Ortiz-Jerez, M. J.; Ochoa-Martínez, C. I. Heat Transfer Mechanisms in Conductive Hydro-Drying of Pumpkin (Cucurbita maxima) Pieces. Drying Technol. 2015, 33(8), 965–972. DOI:10.1080/07373937.2015.1009538.
  • Nahimana, H.; Zhang, M. Shrinkage and Color Change during Microwave Vacuum Drying of Carrot. Drying Technol. 2011, 29, 836–847. DOI:10.1080/07373937.2011.573753.
  • Islam, M. Z.; Kitamura, Y.; Yamano, Y.; Kitamura, M. Effect of Vacuum Spray Drying on the Physicochemical Properties, Water Sorption and Glass Transition Phenomenon of Orange Juice Powder. J. Food Eng. 2016, 169, 131–140. DOI:10.1016/j.jfoodeng.2015.08.024.
  • Perussello, C. A.; Kumar, C.; de Castilhos, F.; Karim, M. A. Heat and Mass Transfer Modeling of the Osmo-Convective Drying of Yacon Roots (Smallanthus sonchifolius). Appl. Therm. Eng. 2014, 63(1), 23–32. DOI:10.1016/j.applthermaleng.2013.10.020.
  • Ponkham, K.; Meeso, N.; Soponronnarit, S.; Siriamornpun, S. Modeling of Combined Far-Infrared Radiation and Air Drying of a Ring Shaped-Pineapple with/without Shrinkage. Food Bioprod. Process. 2012, 90(2), 155–164. DOI:10.1016/j.fbp.2011.02.008.
  • Golestani, R.; Raisi, A.; Aroujalian, A. Mathematical Modeling on Air Drying of Apples Considering Shrinkage and Variable Diffusion Coefficient. Drying Technol. 2013, 31(1), 40–51. DOI:10.1080/07373937.2012.714826.
  • Jaramillo, N.; Restrepo, R.; García, C.; Marín, J. Comparative Study of Two Methods of Drying an Electro-Porcelain Paste. Drying Technol. 2012, 30, 37–43. DOI:10.1080/07373937.2011.610017.
  • Itaya, Y.; Taniguchi, S.; Hasatani, M. A Numerical Study of Transient Deformation and Stress Behavior of a Clay Slab During Drying. Drying Technol. 1997, 15(1), 1–21. DOI:10.1080/07373939708917216.
  • Hosseinpour, S.; Rafiee, S.; Mohtasebi, S. S. Application of Image Processing to Analyze Shrinkage and Shape Changes of Shrimp Batch during Drying. Drying Technol. 2011, 29, 1416–1438. DOI:10.1080/07373937.2011.587620.
  • Toğrul, İ. T.; İspir, A. Effect on Effective Diffusion Coefficients and Investigation of Shrinkage During Osmotic Dehydration of Apricot. Energy Convers. Manage. 2007, 48(10), 2611–2621. DOI:10.1016/j.enconman.2007.05.001.
  • Hatamipour, M. S.; Mowla, D. Correlations for Shrinkage, Density and Diffusivity for Drying of Maize and Green Peas in a Fluidized Bed with Energy Carrier. J. Food Eng. 2003, 59(2–3), 221–227. DOI:10.1016/s0260-8774(02)00461-2.
  • Lewicki, P. P.; Jakubczyk, E. Effect of Hot Air Temperature on Mechanical Properties of Dried Apples. J. Food Eng. 2004, 64(3), 307–314. DOI:10.1016/j.jfoodeng.2003.10.014.
  • Akdaş, S.; Başlar, M. Dehydration and Degradation Kinetics of Bioactive Compounds for Mandarin Slices Under Vacuum and Oven Drying Conditions. J. Food Process. Preserv. 2015, 39(6), 1098–1107. DOI:10.1111/jfpp.12324.
  • Kaushik, P.; Dowling, K.; Adhikari, R.; Barrow, C. J.; Adhikari, B. Effect of Extraction Temperature on Composition, Structure and Functional Properties of Flaxseed Gum. Food Chem. 2017, 215, 333–3400. DOI:10.1016/j.foodchem.2016.07.137.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.