Publication Cover
Drying Technology
An International Journal
Volume 36, 2018 - Issue 7
187
Views
7
CrossRef citations to date
0
Altmetric
ARTICLES

Effect of freeze-drying process on the physical stability and properties of Voriconazole complex system

, , , &
Pages 871-878 | Received 02 Jul 2017, Accepted 27 Jul 2017, Published online: 24 Apr 2018

References

  • Mori, N. M.; Patel, P.; Sheth, N.; Rathod, L. V. Fabrication and Characterization of Film-Forming Voriconazole Transdermal Spray for the Treatment of Fungal Infection. Bull. Fac. Pharm. Cairo Univ. 2017, 55, 41–51. DOI: 10.1016/j.bfopcu.2017.01.001.
  • Okabayashi, K.; Imaji, M.; Osumi, T.; Murakami, Y.; Maruyama, H.; Kano, R.; Hasegawa, A.; Watanabe, T. Antifungal Activity of Itraconazole and Voriconazole Against Clinical Isolates Obtained from Animals with Mycoses. Nippon Ishinkin Gakkai Zasshi 2009, 50, 91–94. DOI: 10.3314/jjmm.50.091.
  • Piérard, G. E.; Arrese, J. E.; Quatresooz, P.; Piérard, F. C. Drug of the Month. Voriconazole (Vfend). Revue Médicale De Liège 2003, 58, 351–355.
  • Marco, F. P.; Faller, M. A.; Messer, S. A.; Jones, R. N. Antifungal Activity of a New Triazole, Voriconazole (UK-109,496), Compared with Three Other Antifungal Agents Tested Against Clinical Isolates of Filamentous Fungi. Med. Mycol. 1999, 36, 433–436. DOI: 10.1111/j.1365-280x.1998.00170.x.
  • Chuwongwattana, S.; Jantararoungtong, T.; Chitasombat, M. N.; Puangpetch, A.; Prommas, S.; Dilokpattanamongkol, P.; Watcharananan, S. P.; Sukasem, C. A Prospective Observational Study of CYP2C19, Polymorphisms and Voriconazole Plasma Level in Adult Thai Patients with Invasive Aspergillosis. Drug Metab. Pharmacokinet. 2016, 31, 117–122. DOI: 10.1016/j.dmpk.2015.12.005.
  • Xiu, X.; Tian, W.; Chen, D. J.; Zhang, X. Y.; Feng, C. X.; Li, Y. H. Solubilization of Sulfobutyl Ether-β-Cyclodextrin on Voriconazole. China Pharm. 2014, 17, 1457–1460.
  • Reis, S.; Fátima, A. D.; Guimarães, L.; Nascimento, C. S. Molecular Inclusion Process of Urease Inhibitors into Cyclodextrins: A Theoretical Study. Chem. Phys. Lett. 2017, 675, 69–74. DOI: 10.1016/j.cplett.2017.03.010.
  • Valente, A. J.; Söderman, O. The Formation of Host-Guest Complexes between Surfactants and Cyclodextrins. Adv. Colloid Interface Sci. 2013, 205, 156–176. DOI: 10.1016/j.cis.2013.08.001.
  • Kurkov, S. V.; Loftsson, T. Cyclodextrins. Int. J. Pharm. 2013, 453, 167–180. DOI: 10.1016/j.ijpharm.2012.06.055.
  • Jansook, P.; Loftsson, T. CDs as Solubilizers: Effects of Excipients and Competing Drugs. Int. J. Pharm. 2009, 379, 32–40. DOI: 10.1016/j.ijpharm.2009.06.005.
  • Mallick, S.; Arathi, A. S.; Koner, A. L. Customized Tuning of Aggregation-Induced Emission of a Napthalimide Dye by Surfactants and Cyclodextrin. J. Colloid Interface Sci. 2017, 499, 46–53. DOI: 10.1016/j.jcis.2017.03.097.
  • Saez, A.; Guzmán, M.; Molpeceres, J.; Aberturas, M. R. Freeze-Drying of Polycaprolactone and Poly(D,L-lactic-glycolic) Nanoparticles Induce Minor Particle Size Changes Affecting the Oral Pharmacokinetics of Loaded Drugs. Eur. J. Pharm. Biopharm. 2000, 50, 379–387. DOI: 10.1016/s0939-6411(00)00125-9.
  • Chacón, M.; Molpeceres, J.; Berges, L.; Guzmán, M.; Aberturas, M. R. Stability and Freeze-Drying of Cyclosporine Loaded Poly (D,L Lactide-glycolide) Carriers. Eur. J. Pharm. Sci. 1999, 8, 99–107. DOI: 10.1016/s0928-0987(98)00066-9.
  • Abdelwahed, W.; Degobert, G.; Stainmesse, S.; Fessi, H. Freeze-drying of Nanoparticles: Formulation, Process and Storage Considerations. Adv. Drug Delivery Rev. 2006, 58, 1688–1713. DOI: 10.1016/j.addr.2006.09.017.
  • Louis, R.; Joan, C. M. Freeze-drying/Lyophilization of Pharmaceutical and Biological Products. Drying Technol. 1999, 18, 1169–1170.
  • Wu, J. J.; Gan, N.; Hu, L.; Chen, S. S.; Pan, H. C.; Liu, H. Effect of Lyophilization Process on the Physical Properties and Stability of Tanshinone ⅡA Micro-Emulsion. Drying Technol. 2016, 8, 1–9. DOI: 10.1080/07373937.2016.1238387.
  • Chen, G. H.; Wang, W. Role of Freeze Drying in Nanotechnology. Drying Technol. 2007, 25, 29–35. DOI: 10.1080/07373930601161179.
  • Wang, B. H.; Zhang, W. B.; Zhang, W.; Mujumdar, A. S.; Huang, L. X. Progress in Drying Technology for Nanomaterials. Drying Technol. 2005, 23, 7–32. DOI: 10.1081/drt-200047900.
  • Searles, J. A.; Carpenter, J. F.; Randolph, T. W. The Ice Nucleation Temperature Determines the Primary Drying Rate of Lyophilization for Samples Frozen on a Temperature‐controlled Shelf. J. Pharm. Sci. 2001, 90, 860–871. DOI: 10.1002/jps.1039.
  • Abdelwahed, W.; Degobert, G.; Fessi, H. Freeze-Drying of Nanocapsules: Impact of Annealing on the Drying Process. Int. J. Pharm. 2006, 324, 74–82. DOI: 10.1016/j.ijpharm.2006.06.047.
  • Zhou, X. L.; Weng, Y.; Chen, G. M. Research on Annealing Mechanism in Freeze-Drying Process of Phamaceuticals. Chem. Eng. 2005, 33, 4–7.
  • James, A. S.; John, F. C.; Theodore, W. R. Annealing to Optimize the Primary Drying Rate, Reduce Freezing‐Induced Drying Rate Heterogeneity, and Determine T’g in Pharmaceutical Lyophilization. J. Pharm. Sci. 2001, 90, 872–887. DOI: 10.1002/jps.1040.
  • Dufour, P. Control Engineering in Drying Technology: Review and Trends. Drying Technol. 2006, 24, 889–904. DOI: 10.1080/07373930600734075.
  • Searles, J. A.; Carpenter, J. F.; Randolph, T. W. Annealing to Optimize the Primary Drying Rate, Reduce Freezing‐Induced Drying Rate Heterogeneity, and Determine Tg in Pharmaceutical Lyophilization. J. Pharm. Sci. 2001, 90, 872–887. DOI: 10.1002/jps.1040.
  • Murni, H.; Nur, A. M. M.; Majdiah, O.; Wasohet, H.; Kapri, M. R.; Ariffal, A. Effect of Encapsulant and Cryoprotectant on the Viability of Probiotic Pediococcus Acidilactici ATCC 8042 During Freeze-Drying and Exposure to High acidity, Bile Salts and Heat. Lwt - Food Sci. Technol. 2017, 81, 120–126. DOI: 10.1016/j.lwt.2017.04.009.
  • Amine, K. M.; Champagne, C. P.; Salmieri, S.; Britten, M.; St-Gelais, D.; Fustier, P.; Lacroix, M. Effect of Palmitoylated Alginate Microencapsulation on Viability of Bifidobacterium Longum, During Freeze-Drying. Lwt - Food Sci. Technol. 2014, 56, 111–117. DOI: 10.1016/j.lwt.2013.11.003.
  • Tu, Z. C.; Zhong, B. Z.; Wang, H. Identification of Glycated Sites in Ovalbumin Under Freeze-drying Processing by Liquid Chromatography High-Resolution Mass Spectrometry. Food Chem. 2017, 226, 1–7. DOI: 10.1016/j.foodchem.2017.01.038.
  • Peters, B. H.; Staels, L.; Rantanen, J.; Molnáret, F.; Beer, T. D.; Lehto, V. P.; Ketolainen, J. Effects of Cooling Rate in Microscale and Pilot Scale Freeze-drying – Variations in Excipient Polymorphs and Protein Secondary Structure. Eur. J. Pharm. Sci. 2016, 95, 72–81. DOI: 10.1016/j.ejps.2016.05.020.
  • Miletic, T.; Kyriakos, K.; Graovac, A.; Ibric, S. Spray-Dried Voriconazole-Cyclodextrin Complexes: Solubility, Dissolution Rate and Chemical Stability. Carbohydr. Polym. 2013, 98, 122–131. DOI: 10.1016/j.carbpol.2013.05.084.
  • Wang, W. T.; Wang, M.; Zhang, J.; Liu, H.; Pan, H. C. Cloud Point Thermodynamics of Paclitaxel-Loaded Microemulsion in the Presence of Glucose and NaCl. Colloids Surf., A 2016, 507, 76–82. DOI: 10.1016/j.colsurfa.2016.07.086.
  • Gooch, J. W. DLVO theory [M]. Springer New York, 2007, pp 318–318.
  • Zhong, J. F. Application of Surfactants in Pharmacy; People’s Health Publishing House, 1995; pp 7–117.
  • Çiğdem, B.; Akbaş, H.; Boz, M. Thermodynamics of Non-Ionic Surfactant Triton X-100-Cationic Surfactants Mixtures at the Cloud Point. J. Chem. Thermodyn. 2011, 43, 1800–1803. DOI: 10.1016/j.jct.2011.06.005.
  • Molina-Bolívar, J. A.; Ruiz, C. C. Micellar Size and Phase Behavior in n-Octyl-β- d -Thioglucoside/Triton X-100 Mixtures: The Effect of NaCl Addition. Fluid Phase Equilib. 2012, 327, 58–64. DOI: 10.1016/j.fluid.2012.05.009.
  • Chatterjee, A.; Roy, B.; Moulik, S. P.; SahuSaponin, N. P.; Mondal, N. B. Induced Clouding Behavior of Triton X-100 and Methylcellulose. J. Dispersion Sci. Technol. 2002, 23, 747–757. DOI: 10.1081/dis-120015972.
  • Khan, M. B.; Hoque, M. A.; Islam, D. M. S. Physicochemical Investigation of the Clouding Behavior and Thermodynamics of p-tert-alkylphenoxy Poly (Oxyethylene) Ether Micelles in Aqueous Environment and in the Presence of Diols. J. Chem. Thermodyn. 2015, 89, 177–182. DOI: 10.1016/j.jct.2015.05.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.