Publication Cover
Drying Technology
An International Journal
Volume 36, 2018 - Issue 10
150
Views
11
CrossRef citations to date
0
Altmetric
ARTICLES

Evolution of microstructure and combustion reactivity of lignite during high-temperature drying process

, , , , &
Pages 1170-1178 | Received 16 May 2017, Accepted 05 Oct 2017, Published online: 08 Feb 2018

References

  • Scholes, O. N. Dewatering of Biomaterials by Mechanical Thermal Expression. Drying Technol. 2006, 24(7), 819–834. DOI: 10.1080/07373930600733093.
  • Feng, L; Tang, J. W.; Ma, Z. L.; Wan, Y. Z. Effect of Mechanical Thermal Expression Drying Technology on Lignite Structure. Drying Technol. 2016, 35, 356–362. DOI: 10.1080/07373937.2016.1174938.
  • Zheng, H. J.; Zhang, S. Y.; Guo, X.; Lu, J. F.; Dong, A. X. An Experimental Study on the Drying Kinetics of Lignite in High Temperature Nitrogen Atmosphere. Fuel-Process. Technol. 2014, 126, 259–265. DOI: 10.1016/j.fuproc.2014.05.009.
  • Jing, X. X.; Li, Z. Q.; Zhang, Y. L.; Chang, L. P. Changes of Oxygen-Containing Groups During Thermal Treatment and their Influences on Moisture Readsorption of Lignite. Drying Technol. 2016, 34, 729–739. DOI: 10.1080/07373937.2015.1072548.
  • Liu, M.; Yan, J. J.; Bai, B. F.; Chong, D. T.; Guo, X. K.; Xiao, F. Theoretical Study and Case Analysis for a Predried Lignite-Fired Power System. Drying Technol. 2010, 29, 1219–1229. DOI: 10.1080/07373937.2011.582559.
  • Song, Z. L.; Yao, L. S.; Jing, C. M.; Zhao, X. Q.; Wang, W. L.; Ma, C. Y. Drying Behavior of Lignite Under Microwave Heating. Drying Technol. 2016, 35, 433–443. DOI: 10.1080/07373937.2016.1182547.
  • Rao, Z. H.; Zhao, Y. M.; Huang, C. L.; Duan, C. L.; He, J. F. Recent Developments in Drying and Dewatering for Low Rank Coals. Prog. Energy Combust. Sci. 2015, 46, 1–11. DOI: 10.1016/j.pecs.2014.09.001.
  • Hao, Z. H. The Development of Baffle Downer Dryer for Lignite Dewater with High Temperature Flue Gas and the Research of the Key Technologies. Master dissertation, Tsinghua University, 2011.
  • Wen, Y. L.; Liao, J. J.; Liu, X.; Wei, F. J.; Chang, L. P. Removal Behaviors of Moisture in Raw Lignite and Moisturized Coal and their Dewatering Kinetics Analysis. Drying Technol. 2016, 35, 88–96. DOI: 10.1080/07373937.2016.1160246.
  • Karthikeyan, M. Minimization of Moisture Readsorption in Dried Coal Samples. Drying Technol. 2008, 26, 948–955. DOI: 10.1080/07373930802142846.
  • Yu, J. L.; Tahmasebi, A.; Han, Y. N.; Yin, F. K.; Li, X. C. A Review on Water in Low Rank Coals: The Existence, Interaction with; Coal Structure and Effects on Coal Utilization. Fuel-Process. Technol. 2013, 106, 9–20. DOI: 10.1016/j.fuproc.2012.09.051.
  • Xu, J. L.; Bai, Z. Q.; Bai, J.; Kong, L. X.; Lv, D. M.; Han, Y. N. Physico-Chemical Structure and Combustion Properties of Chars Derived from Co-Pyrolysis of Lignite with Direct Coal Liquefaction Residue. Fuel 2017, 187, 103–110. DOI: 10.1016/j.fuel.2016.09.028.
  • Zhang, Y. L.; Jing, X. X.; Jing, K. G.; Chang, L. P.; Bao, W. R. Study on the Pore Structure and Oxygen-Containing Functional Groups Devoting to the Hydrophilic Force of Dewatered Lignite. Appl. Surf. Sci. 2015, 324, 90–98. DOI: 10.1016/j.apsusc.2014.10.126.
  • Cai, Y. D.; Liu, D. M.; Pan, Z. J.; Yao, Y. B.; Li, J. Q.; Qiu, Y. K. Pore Structure and its Impact on CH4 Adsorption Capacity and Flow Capability of Bituminous and Subbituminous Coals from Northeast China. Fuel 2013, 103, 258–268. DOI: 10.1016/j.fuel.2012.06.055.
  • Sonibare, O. O.; Haeger, T.; Foley, S. F. Structural Characterization of Nigerian Coals by X-Ray Diffraction, Raman and FTIR Spectroscopy. Energy 2010, 35, 5347–5353. DOI: 10.1016/j.energy.2010.07.025.
  • Tahmasebi, A.; Yu, J. L.; Bhattacharya, S. Chemical Structure Changes Accompanying Fluidized-Bed Drying of Victorian Brown Coals in Superheated Steam, Nitrogen, and Hot Air. Energy Fuels. 2013, 27, 154–166. DOI: 10.1021/ef3016443.
  • Chabalala, V. P.; Wagner, N.; Potgieter-Vermaak, S. Investigation into the Evolution of Char Structure Using Raman Spectroscopy in Conjunction with Coal Petrography; Part 1. Fuel-Process. Technol. 2011, 927, 50–756. DOI: 10.1016/j.fuproc.2010.09.006.
  • Sheng, C. Char Structure Characterised by Raman Spectroscopy and its Correlations with Combustion Reactivity. Fuel 2007, 86, 2316–2324. DOI: 10.1016/j.fuel.2007.01.029.
  • Liu, H. L.; E, J. Q.; Ma, X. Q.; Xie, C. Q. Influence of Microwave Drying on the Combustion Characteristics of Food Waste. Drying Technol. 2016, 34, 1397–1405. DOI: 10.1080/07373937.2015.1118121.
  • Man, C. B.; Zhu, X.; Gao, X. Z.; Che, D. F. Combustion and Pollutant Emission Characteristics of Lignite Dried by Low Temperature Air. Drying Technol. 2015, 33, 616–631. DOI: 10.1080/07373937.2014.967402.
  • Liu, X. C.; Hirajima, T.; Nonaka, M.; Mursito, A. T.; Sasaki, K. Use of FTIR Combined with Forms of Water to Study the Changes in Hydrogen Bonds During Low-Temperature Heating of Lignite. Drying Technol. 2016, 34, 185–193. DOI: 10.1080/07373937.2015.1026984.
  • Chen, X. D.; Stott, J. B. The Effect of Moisture Content on the Oxidation Rate of Coal During Near-Equilibrium Drying and Wetting at 50°C. Fuel 1993, 72, 787–792. DOI: 10.1016/0016-2361(93)90081-c.
  • Wang, D. M.; Xin, H. H.; Qi, X. Y.; Dou, G. L.; Qi, G. S.; Ma, L. Y. Reaction Pathway of Coal Oxidation at Low Temperatures: A Model of Cyclic Chain Reactions and Kinetic Characteristic. Combust. Flame 2016, 163, 447–460. DOI: 10.1016/j.combustflame.2015.10.019.
  • Li, X. J.; Hayashi, J.; Li, C. Z. FT-Raman Spectroscopic Study of the Evolution of Char Structure During the Pyrolysis of a Victorian Brown Coal. Fuel 2006, 85, 1700–1707. DOI: 10.1016/j.fuel.2006.03.008.
  • Baysal, M.; Yurum, A.; Yildiz, B.; Yurum, Y. Structure of Some Western Anatolia Coals Investigated by FTIR, Raman, C-13 Solid State NMR Spectroscopy and X-Ray Diffraction. Int. J. Coal Geol. 2016, 163, 166–176. DOI: 10.1016/j.coal.2016.07.009.
  • Kelemen, S. R.; Fang, H. L. Maturity Trends in Raman Spectra from Kerogen and Coal. Energy Fuels 2001, 15, 653–658. DOI: 10.1021/ef0002039.
  • Nakagawa, T.; Komaki, I.; Sakawa, M.; Nishikawa, K. Small Angle X-Ray Scattering Study on Change of Fractal Property of Witbank Coal with Heat Treatment. Fuel 2000, 79, 1341–1346. DOI: 10.1016/s0016-2361(99)00269-0.
  • Sakurovs, R.; Lynch, L. J.; Maher, T. P.; Banerjee, R. N. Molecular Mobility During Pyrolysis of Australian Bituminous Coals. Energy Fuels 1987, 1(2), 167–172. DOI: 10.1021/ef00002a005.
  • Yoshida, T.; Iino, M.; Takanohashi, T. A.; Katoh, K. Study on Thermoplasticity of Coking Coals from Solvent Extraction and Viscoelasticity Measurements. Int. J. Soc. Mater. Eng. Resour. 1999, 7(2), 301–311. DOI: 10.5188/ijsmer.7.301.
  • Fei, Y.; Artanto, Y.; Giroux, L.; Marshall, M.; Jackson, W. R.; Macphee, J. A. Comparison of Some Physico–Chemical Properties of Victorian Lignite Dewatered Under Non-Evaporative Conditions. Fuel 2006, 85(14), 1987–1991. DOI: 10.1016/j.fuel.2006.03.023.
  • Küçükbayrak, S.; Haykırı-Açma, H.; Ersoy-Meriçboyu, A.; Yaman, S. Effect of Lignite Properties on Reactivity of Lignite. Energy Convers. Manage. 2001, 42(5), 613–626. DOI: 10.1016/s0196-8904(00)00073-x.
  • Kadioglu, Y.; Varamaz, M. The Effect of Moisture Content and Air-Drying on Spontaneous Combustion Characteristics of Two Turkish Lignites. Fuel 2003, 82, 1685–1693. DOI: 10.1016/s0016-2361(02)00402-7.
  • Cao, W.; Cao, W.; Peng, Y.; Qiu, S.; Miao, N.; Pan, F. Experimental Study on the Combustion Sensitivity Parameters and Pre-Combusted Changes in Functional Groups of Lignite Coal Dust. Powder Technol. 2015, 283, 512–518. DOI: 10.1016/j.powtec.2015.06.025.
  • Liu, X.; Masuyama, T.; Hirajima, T.; Nonaka, M.; Sasaki, K. Combustion Performance of Loy Yang Lignite Treated Using Microwave Irradiation Treatment. Thermochimica Acta 2016, 642, 81–87. DOI: 10.1016/j.tca.2016.09.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.