Publication Cover
Drying Technology
An International Journal
Volume 37, 2019 - Issue 1
322
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Experimental characterization and modeling of microwave heating of oil palm kernels, mesocarps, and empty fruit bunches

ORCID Icon, , ORCID Icon, &
Pages 69-91 | Received 06 Jul 2017, Accepted 05 Feb 2018, Published online: 01 Mar 2018

References

  • Sivasothy, K.; Rohaya, M. H. Crushing and Sterilization of Fresh Fruit Bunches: A Promising Approach for Continuous Sterilization. International Planters Conference, Kuala Lumpur, 2000. DOI: 10.1063/1.4993432.
  • Chow, M. C.; Ma, A. N. Processing of Fresh Palm Fruits using Microwaves. J. Microwave Power Electromagn. Energy 2007, 40, 165–173. DOI: 10.1080/08327823.2005.11688538.
  • Sukaribin, N.; Khalid, K. Effectiveness of Sterilisation of Oil Palm Bunch using Microwave Technology. Ind. Crops Prod. 2009, 30, 179–183. DOI: 10.1016/j.indcrop.2009.05.001.
  • Chang, J. S. L.; Chan, Y. S.; Law, M. C.; Leo, C. P. Comparative Microstructure Study of Oil Palm Fruit Bunch Fibre, Mesocarp and Kernels after Microwave Pre-Treatment. ICMTE 2017, IOP Conference Series: Materials Science and Engineering, Miri, Sarawak, Malaysia, 2017; Vol. 217.
  • Chang, J. S. L.; Law, M. C.; Chan, Y. S.; Leo, C. P. Effects of Microwave Heating on Oil Palm Mesocarp. Chem. Eng. Trans. 2015, 45, 1633–1638. DOI: 10.1021/ja0450253.
  • Tan, J. C. X.; Chuah, C.-H.; Cheng, S.-F. A Combined Microwave Pretreatment/Solvent Extraction Process for the Production of Oil from Palm Fruit: Optimisation, Oil Quality and Effect of Prolonged Exposure. J. Sci. Food Agric. 2017, 97, 1784–1789. DOI: 10.1002/jsfa.7975.
  • Nokkaew, R.; Punsuvon, V. Sterilization of Oil Palm Fruits by Microwave Heating for Replacing Steam Treatment in Palm Oil Mill Process. Adv. Mater. Res. 2014, 1025–1026, 470–475. DOI: 10.4028/www.scientific.net/amr.1025-1026.470.
  • Choto, A.; Thongurai, C.; Kladkaew, N.; Kiatweerasakul, M. Sterilization of Oil Palm Fruit using Radio-Frequency Heating. Int. J. Adv. Chem. Eng. Biol. Sci. 2014, 1, 123–126. DOI: 10.7763/ijcea.2013.v4.274.
  • Rahman, M. M.; Joardder, M. U. H.; Khan, M. I. H.; Pham, N. D.; Karim, M. A. Multi-Scale Model of Food Drying: Current Status and Challenges. Crit. Rev. Food Sci. Nutr. 2017, 1–19. DOI: 10.1080/10408398.2016.1227299.
  • Khan, M. I. H.; Joardder, M. U. H.; Kumar, C.; Karim, M. A. Multiphase Porous Media Modelling: A Novel Approach to Predicting Food Processing Performance. Crit. Rev. Food Sci. Nutr. 2016, 1–19. DOI: 10.1016/j.ijmultiphaseflow.2017.03.018.
  • Rattanadecho, P.; Makul, N. Microwave-Assisted Drying: A Review of the State-of-the-Art. Drying Technol. 2015, 34, 1–38. DOI: 10.1080/07373937.2014.957764.
  • Feng, H.; Yin, Y.; Tang, J. Microwave Drying of Food and Agricultural Materials: Basic and Heat and Mass Transfer Modelling. Food Eng. Rev. 2012, 4, 89–106. DOI: 10.1007/s12393-012-9048-x.
  • Katekawa, M. E.; Silva, M. A. A Review of Drying Models Including Shrinkage Effects. Drying Technol. 2006, 24, 5–20. DOI: 10.1080/07373930500538519.
  • Mayor, L.; Sereno, A. M. Modelling Shrinkage During Convective Drying of Food Materials: A Review. J. Food Eng. 2004, 61, 373–386. DOI: 10.1016/s0260-8774(03)00144-4.
  • Özbek, B.; Dadali, G. Thin-Layer Drying Characteristics and Modelling of Mint Leaves Undergoing Microwave Treatment. J. Food Eng. 2007, 83, 541–549. DOI: 10.1016/j.jfoodeng.2007.04.004.
  • Ghazanfari, A.; Emami, S.; Tabil, L. G.; Panigrahi, S. Thin-Layer Drying of Flax Fiber: I. Analysis of Modeling using Fick’s Second Law of Diffusion. Drying Technol. 2006, 24, 1631–1635. DOI: 10.1080/07373930601031430.
  • McMinn, W. A. M.; McLoughlin, C. M.; Magee, T. R. A. Thin-Layer Modeling of Microwave, Microwave-Convective, and Microwave-Vacuum Drying of Pharmaceutical Powders. Drying Technol. 2005, 23, 513–532. DOI: 10.1081/drt-200054126.
  • Ertekin, C.; Firat, M. Z. A comprehensive review of thin-layer drying models used in agricultural products. Crit. Rev. Food Sci. Nutr. 2017, 57, 701–717. DOI: 10.1080/10408398.2014.910493.
  • Kucuk, H.; Midilli, A.; Kilic, A.; Dincer, I. A Review on Thin-Layer Drying-Curve Equations. Drying Technol. 2014, 32, 757–773. DOI: 10.1080/07373937.2013.873047.
  • Crank, J. The Mathematics of Diffusion; Oxford University Press: London, 1975.
  • Sutar, P. P.; Prasad, S. Modeling Microwave Vacuum Drying Kinetics and Moisture Diffusivity of Carrot Slices. Drying Technol. 2007, 25, 1695–1702. DOI: 10.1080/07373930701590947.
  • Dadali, G.; Demirhan, E.; Özbek, B. Microwave Heat Treatment of Spinach: Drying Kinetics and Effective Moisture Diffusivity. Drying Technol. 2007, 25, 1703–1712. DOI: 10.1111/j.1745-4549.2008.00352.x.
  • Sharma, G. P.; Prasad, S. Effective Moisture Diffusivity of Garlic Cloves Undergoing Microwave-Convective Drying. J. Food Eng. 2004, 65, 609–617. DOI: 10.1016/j.jfoodeng.2004.02.027.
  • Gely, M. C.; Santalla, E. M. Moisture Diffusivity in Quinoa (Chenopodium Quinoa Willd) Seeds: Effect of Air Temperature and Initial Moisture Content of Seeds. J. Food Eng. 2007, 78, 1029–1033. DOI: 10.1016/j.jfoodeng.2005.12.015.
  • Dak, M.; Pareek, N. K. Effective Moisture Diffusivity of Pomegranate Arils Under Going Microwave-Vacuum Drying. J. Food Eng. 2014, 122, 117–121. DOI: 10.1016/j.jfoodeng.2013.08.040.
  • Khan, M. I. H.; Kumar, C.; Joardder, M. U. H.; Karim, M. A. Determination of Appropriate Effective Diffusivity for Different Food Materials. Drying Technol. 2017, 35, 335–346. DOI: 10.1016/j.proeng.2014.11.769.
  • Luikov, A. V. Systems of Differential Equations of Heat and Mass Transfer in Capillary-Porous Bodies (Review). Int. J. Heat Mass Transfer 1975, 18, 1–14. DOI: 10.1016/0017-9310(75)90002-2.
  • Whitaker, S. Simultaneous Heat, Mass, and Momentum Transfer in Porous Media: A Theory of Drying. In Advances in Heat Transfer; James, P. H.; Thomas, F. I., Eds.; Elsevier, 1977; Vol. 13, pp 119–203.
  • Kumar, C.; Karim, M. A.; Joardder, M. U. H. Intermittent Drying of Food Products: A Critical Review. J. Food Eng. 2014, 121, 48–57. DOI: 10.1016/j.jfoodeng.2013.08.014.
  • Wray, D.; Ramaswamy, H. S. Novel Concepts in Microwave Drying of Foods. Drying Technol. 2015, 33, 769–783. DOI: 10.1080/07373937.2014.985793.
  • Castro, A. M.; Mayorga, E. Y.; Moreno, F. L. Mathematical Modelling of Convective Drying of Fruits: A Review. J. Food Eng. 2018, 223, 152–167.
  • Zhao, J.; Fu, Z.; Jia, X.; Cai, Y. Modeling Conventional Drying of Wood: Inclusion of a Moving Evaporation Interface. Drying Technol. 2016, 34, 530–538. DOI: 10.1080/07373937.2015.1060999.
  • Kumar, C.; Joardder, M. U. H.; Farrell, T. W.; Millar, G. J.; Karim, M. A. Mathematical Model for Intermittent Microwave Convective Drying of Food Materials. Drying Technol. 2016, 34, 962–973. DOI: 10.1080/07373937.2015.1087408.
  • Kumar, C.; Joardder, M. U. H.; Farrell, T. W.; Karim, M. A. Multiphase Porous Media Model for Intermittent Microwave Convective Drying (IMCD) of Food. Int. J. Therm. Sci. 2016, 104, 304–314. DOI: 10.1016/j.ijthermalsci.2016.01.018.
  • Kumar, C.; Joardder, M. U. H.; Karim, A.; Millar, G. J.; Amin, Z. Temperature Redistribution Modelling During Intermittent Microwave Convective Heating. Proced. Eng. 2014, 90, 544–549. DOI: 10.1016/j.proeng.2014.11.770.
  • Arballo, J. R.; Campañone, L. A.; Mascheroni, R. H. Modeling of Microwave Drying of Fruits. Drying Technol. 2010, 28, 1178–1184. DOI: 10.1080/07373937.2010.493253.
  • Yang, H. W.; Gunasekaran, S. Comparison of Temperature Distribution in Model Food Cylinders Based on Maxwell’s Equations and Lambert’s Law During Pulsed Microwave Heating. J. Food Eng. 2004, 64, 445–453. DOI: 10.1016/j.jfoodeng.2003.08.016.
  • Pu, G.; Song, G.; Song, C.; Wang, J. Analysis of Thermal Effect Using Coupled Hot-Air and Microwave Heating at Different Position of Potato. Innovative Food Sci. Emerg. Technol. 2017, 41, 244–250. DOI: 10.1016/j.ifset.2017.03.014.
  • Chen, J.; Pitchai, K.; Birla, S.; Jones, D.; Negahban, M.; Subbiah, J. Modeling Heat and Mass Transport During Microwave Heating of Frozen Food Rotating on a Turntable. Food Bioprod. Process. 2016, 99, 116–127. DOI: 10.1016/j.fbp.2016.04.009.
  • Zhu, H.; Gulati, T.; Datta, A. K.; Huang, K. Microwave Drying of Spheres: Coupled Electromagnetics-Multiphase Transport Modeling with Experimentation. Part I: Model Development and Experimental Methodology. Food Bioprod. Process. 2015, 96, 314–325. DOI: 10.1016/j.fbp.2015.08.003.
  • Pitchai, K.; Chen, J.; Birla, S.; Gonzalez, R.; Jones, D.; Subbiah, J. A Microwave Heat Transfer Model for a Rotating Multi-Component Meal in a Domestic Oven: Development and Validation. J. Food Eng. 2014, 128, 60–71. DOI: 10.1016/j.jfoodeng.2013.12.015.
  • Zhu, H.; Gulati, T.; Datta, A. K.; Huang, K.; Three-Dimensional (3D) Modeling of Heat and Mass Transfer During Microwave Drying of Potatoes. COMSOL Conference, Boston, 9-11th October, 2013.
  • De Bonis, M. V.; Caccavale, P.; Ruocco, G. Convective Control to Microwave Exposure of Moist Substrates. Part I: Model Methodology. Int. J. Heat Mass Transfer 2015, 86, 943–949. DOI: 10.1016/j.ijheatmasstransfer.2015.03.036.
  • Kowalski, S. J. Mathematical Modelling of Shrinkage During Drying. Drying Technol. 1996, 14, 307–331. DOI: 10.1007/978-3-642-01999-9_3.
  • Kowalski, S. J. Thermomechanics of the Drying Process of Fluid-Saturated Porous Media. Drying Technol. 1994, 12, 453–482. DOI: 10.1080/07373939408959974.
  • Hasatani, M.; Itaya, Y. Drying-Induced Strain and Stress: A Review. Drying Technol. 1996, 14, 1011–1040. DOI: 10.1080/07373939608917138.
  • Tsuruta, T.; Tanigawa, H.; Sashi, H. Study on Shrinkage Deformation of Food in Microwave–Vacuum Drying. Drying Technol. 2015, 33, 1830–1836. DOI: 10.1080/07373937.2015.1036286.
  • Yang, H.; Sakai, N.; Watanabe, M. Drying Model with Non-Isotropic Shrinkage Deformation Undergoing Simulteneous Heat and Mass Transfer. Drying Technol. 2001, 19, 1441–1460. DOI: 10.1081/drt-100105299.
  • Yang, H.; Sakai, N. Shrinkage and Mechanical Characteristics of Potato Undergoing Air Convective Drying. Jpn. J. Food Eng. 2001, 2, 67–71. DOI: 10.1118/1.4942812.
  • Kowalski, S. J.; Musielak, G.; Banaszak, J. Heat and Mass Transfer During Microwave-Convective Drying. AlChE J. 2009, 56, 24–35. DOI: 10.1002/aic.11948.
  • Joardder, M. U. H.; Kumar, C.; Karim, M. A. Multiphase Transfer Model for Intermittent Microwave-Convective Drying of Food: Considering Shrinkage and Pore Evolution. Int. J. Multiphase Flow 2017, 95, 101–119. DOI: 10.1016/j.ijmultiphaseflow.2017.03.018.
  • Gulati, T.; Zhu, H.; Datta, A. K. Coupled Electromagnetics, Multiphase Transport and Large Deformation Model for Microwave Drying. Chem. Eng. Sci. 2016, 156, 206–228. DOI: 10.1016/j.ces.2016.09.004.
  • Sunjka, P. S.; Rennie, T. J.; Beaudry, C.; Raghavan, G. S. V. Microwave-Convective and Microwave-Vacuum Drying of Cranberries: A Comparative Study. Drying Technol. 2004, 22, 1217–1231. DOI: 10.1081/drt-120038588.
  • Ibrahim, M. H.; Daud, W. R. W.; Talib, M. Z. M. Drying Characteristics of Oil Palm Kernels. Drying Technol. 1997, 15, 1103–1117. DOI: 10.1111/j.1745-4549.2010.00488.x.
  • Ibrahim, M. H.; Daud, W. R. W.; Ismail, M. S.; Talib, M. Z. M. Equilibrium Relative Humidity-Equilibrium Moisture Content Isotherms of Oil Palm Kernels. Pertan. J. Sci. Technolo. 1997, 5, 1–6. DOI: 10.1016/b978-0-44-459497-6.00013-x.
  • Daud, W. R. W.; Ibrahim, M. H.; Talib, M. Z. M. Parameter Estimation of Fick’s Law Drying Equation. Drying Technol. 1997, 15, 1673–1686. DOI: 10.1080/07373939708917317.
  • Salema, A. A.; Afzal, M. T. Numerical Simulation of Heating Behaviour in Biomass Bed and Pellets Under Multimode Microwave System. Int. J. Therm. Sci. 2015, 91, 12–24. DOI: 10.1016/j.ijthermalsci.2015.01.003.
  • Law, M. C.; Liew, E. L.; Chang, S. L.; Chan, Y. S.; Leo, C. P. Modelling Microwave Heating of Discrete Samples of Oil Palm Kernels. Appl. Therm. Eng. 2016, 98, 702–726. DOI: 10.1016/j.applthermaleng.2016.01.009.
  • Puangsuwan, K.; Chongcheawchamnan, M.; Tongurai, C. Effective Moisture Diffusivity, Activation Energy and Dielectric Model for Palm Fruit using a Microwave Heating. J. Microwave Power Electromagn. Energy 2015, 49, 100–111. DOI: 10.1080/08327823.2015.11689900.
  • Aremu, A. K.; Fadele, O. K. Study of Some Properties of Doum Palm Fruit (Hyphaene Thebaica Mart) in Relation to Moisture Content. Afr. J. Agricu. Res. 2011, 6, 3597–3602. DOI: 10.19080/ijesnr.2017.04.555647.
  • Srisang, N.; Soponronnarit, S.; Thuwappanichayanan, R.; Prachayawarakorn, S. Modelling Heat and Mass Transfer Induced Stresses in Germinated Brown Rice Kernels During Fluidized Bed Drying. Drying Technol. 2016, 34, 619–634. DOI: 10.1016/j.jfoodeng.2005.05.040.
  • Brinson, H. F.; Brinson, L. C. Polymer Engineerig Science and Viscoelasticity: An Introduction, 2nd ed.; Springer: New York, 2015.
  • Niamnuy, C.; Devahistin, S.; Soponronnarit, S.; Raghavan, G. S. V. Modeling Coupled Transport Phenomena and Mechanical Deformation of Shrimp During Drying in a Jet Spouted Bed Dryer. Chem. Eng. Sci. 2008, 63, 5503–5512. DOI: 10.1016/j.ces.2008.07.031.
  • Lloyd Instruments Ltd. www.lloyd-instruments.com/download/SS-twin%20bench-LR10KPlus.pdf, 2009.
  • Blackham, D. V.; Pollard, R. D. An Improved Technique for Permittivity Measurements using a Coaxial Probe. IEEE Trans. Instrum. Meas. 1997, 46, 1093–1099. DOI: 10.1109/19.676718.
  • Koya, O. A.; Fono-Tamo, R. S. Characterisation of Pulverised Palm Kernel Shell for Sustainable Waste Diversification. Int. J. Sci. Eng. Res. 2013, 4, 6–10. DOI: 10.1111/j.1740-0929.2010.00752.x.
  • Dixon, C.; Strong, M. R.; Zhang, S. M. Transient Plane Source Technique for Measuring Thermal Properties of Silicone Materials used in Electronic Assemblies. Int. J. Microcircuits Electron. Packag. 2000, 23, 494–500. DOI: 10.1029/2004wr003389.
  • Meredith, R. Engineer’s Handbook of Industrial Microwave Heating. IEE Power Ser. 1998, 25, 382.
  • Salvi, D.; Boldor, D.; Aita, G. M.; Sabliov, C. M. Comsol Multiphysics Model for Continuous Flow Microwave Heating of Liquids. J. Food Eng. 2011, 104, 422–429. DOI: 10.1016/j.jfoodeng.2011.01.005.
  • Gottschalk, K.; Linke, M.; Mészáros, C.; Farkas, I. Modeling Condensation and Evaporation on Fruit Surface. Drying Technol. 2007, 25, 1237–1242. DOI: 10.1080/07373930701438667.
  • Metaxas, A. C.; Meredith, R. J. Industrial Microwave Heating; P. Peregrinus, 1983.
  • Malafronte, L.; Lamberti, G.; Barba, A. A.; Raaholt, B.; Holtz, E.; Ahrné, L. Combined Convective and Microwave Assisted Drying: Experiments and Modeling. J. Food Eng. 2012, 112, 304–312. DOI: 10.1016/j.jfoodeng.2012.05.005.
  • Gómez-de la Cruz, F. J.; Palomar-Carnicero, J. M.; Casanova-Peláez, P. J.; Cruz-Peragón, F. Experimental Determination of Effective Moisture Diffusivity During the Drying of Clean Olive Stone: Dependence of Temperature, Moisture Content and sample thickness. Fuel Process. Techno. 2015, 137, 320–326. DOI: 10.1007/s12649-016-9777-9.
  • Verboven, P.; Datta, A. K.; Anh, N. T.; Scheerlinck, N.; Nicolaï, B. M. Computation of Airflow Effects on Heat and mass transfer in a Microwave Oven. J. Food Eng., 2003, 59, 181–190. DOI: 10.1016/s0260-8774(02)00456-9.
  • Zhang, J.; Datta, A. K. Some Considerations in Modeling of Moisture Transport in Heating of Hygroscopic Materials. Drying Technol. 2004, 22, 1983–2008. DOI: 10.1007/bf00460413.
  • Rakesh, V.; Datta, A. K.; Walton, J. H.; McCarthy, K. L.; McCarthy, M. J. Microwave Combination Heating: Coupled Electromagnetics- Multiphase Porous Media Modeling and Mri Experimentation. Bioeng. Food Nat. Prod. 2011, 58, 1262–1278. DOI: 10.1002/aic.12659.
  • Hii, C. L.; Law, C. L.; Law, M. C. Simulation of Heat and Mass Transfer of cocoa Beans Under Stepwise Drying Conditions in a Heat Pump Dryer. Appl. Therm. Eng. 2013, 54, 264–271. DOI: 10.1016/j.applthermaleng.2013.02.010.
  • Sólyom, K.; Kraus, S.; Mato, R. B.; Gaukel, V.; Schuchmann, H. P.; Cocero, M. J. Dielectric Properties of Grape Marc: Effect of Temperature, Moisture Content and Sample Preparation Method. J. Food Eng. 2013, 119, 33–39. DOI: 10.1016/j.jfoodeng.2013.05.005.
  • Feng, H.; Tang, J.; Cavalieri, R. P. Dielectric Properties of Dehydrated Apples as Affected by Moisture and Temperature. Trans. ASAE 2002, 45, 129–135. DOI: 10.13031/2013.7855.
  • Ryynänen, S. The Electromagnetic Properties of Food Material: A review of the Basic Principles. J. Food Eng. 1995, 26, 409–429. DOI: 10.1386/crre.2.115_7.
  • Datta, A. K.; Anantheswaran, R. C. Handbook of Microwave Technology for Food Application; Marcell Dekker, Inc: New York, 2001.
  • Hussain, S. A.; Bano, S.; Yeoh, H. S.; Rozita, O. Simulation on Temperature Distribution of Oil Palm Empty Fruit Bunches During the Microwave Pyrolysis Process. Asia—Pac. J. Chem. Eng. 2014, 9, 39–49. DOI: 10.1002/apj.1744.
  • Ku, H. S.; Siores, E.; Ball, J. A. R. Review—Microwave Processing of Materials: Part I. HKIE Trans. 2001, 8, 31–37.
  • Owolarafe, O. K.; Olabige, M. T.; Faborode, M. O. Physical and Mechanical Properties of Two Varieties of Fresh Oil Palm Fruit. J. Food Eng. 2007, 78, 1228–1232. DOI: 10.1016/j.jfoodeng.2005.12.049.
  • Methacanon, P.; Weerawatsophon, U.; Sumransin, N.; Prahsarn, C.; Bergado, D. T. Properties and Potential Application of the Selected Natural Fibers as Limited Life Geotextiles. Carbohydr. Polym., 2010, 82, 1090–1096. DOI: 10.1016/j.carbpol.2010.06.036.
  • Martin, A. R.; Martins, M. A.; O.R.R.F. da Silva, Mattoso, L. H. C. Studies on the Thermal Properties of Sisal Fiber and its Constituents. Thermochim. Acta 2010, 506, 14–19. DOI: 10.1016/j.tca.2010.04.008.
  • Lee, S.-H.; Wang, S. Biodegradable Polymers/Bamboo Fiber Biocomposite with Bio-Based Coupling Agent. Compos. Part A: Appl. Sci. Manuf. 2006, 37, 80–91. DOI: 10.1002/jbm.a.35126.
  • Nabinejad, O.; Sujan, D.; Rahman, M. E.; Davies, I. J. Effect of Oil Palm Shell Powder on the Mechanical Performance and Thermal Stability of Polyester Composites. Mater. Des, 2015, 65, 823–830. DOI: 10.1016/j.matdes.2014.09.080.
  • Contreras, C.; Martín-Esparza, M. E.; Chiralt, A.; Martínez-Navarrete, N. Influence of Microwave Application on Convective Drying: Effects on Drying Kinetics, and Optical and Mechanical Properties of Apple and Strawberry, J. Food Eng. 2008, 88, 55–64. DOI: 10.1016/j.jfoodeng.2008.01.014.
  • Hemis, M.; Gariépy, Y.; Choudhary, R.; Raghavan, V. New Coupling Model of Microwave Assisted Hot-Air Drying of a Capillary Porous Agricultural Product: Application on Soybeans and Canola Seeds. Appl. Therm. Eng. 2017, 114, 931–937. DOI: 10.1016/j.applthermaleng.2016.12.041.
  • Gunasekaran, S. Grain Drying Using Continuous and Pulsed Microwave Energy. Drying Technol. 1990, 8, 1039–1047. DOI: 10.1080/07373939008959934.
  • Ouertani, S.; Hassini, L.; Azzouz, S.; Torres, S. S.; Belghith, A.; Koubaa, A. Modeling of Combined Microwave and Convective Drying of Wood: Prediction of Mechanical Behavior Via Internal Gas Pressure. Drying Technol. 2015, 33, 1234–1242. DOI: 10.1080/07373937.2015.1022828.
  • Khan, M. I. H.; Wellard, R. M.; Nagy, S. A.; Joardder, M. U. H.; Karim, M. A. Experimental Investigation of Bound and Free Water Transport Process During Drying of Hygroscopic Food Material. Int. J. Therm. Sci. 2017, 117, 266–273. DOI: 10.1016/j.ijthermalsci.2017.04.006.
  • Prakash, B.; Pan, Z. Effect of Geometry of Rice Kernels on Drying Modeling Results. Drying Technol. 2012, 30, 801–807. DOI: 10.1080/07373937.2012.665112.
  • Dong, R.; Lu, Z.; Liu, Z. Moisture Distribution in a Rice Kernel During Tempering Drying. J. Food Eng. 2009, 91, 126–132. DOI: 10.1002/eco.1760.
  • Rees, D. W. A. Basic Engineering Plasticity: An Introduction with Engineering and Manufacturing Applications; Elsevier: UK, 2006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.