Publication Cover
Drying Technology
An International Journal
Volume 37, 2019 - Issue 1
2,792
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Evaporation of a sessile water droplet subjected to forced convection in humid environment

&

References

  • Bansal, P.; Vineyard, E.; Abdelaziz, O. Advances in Household Appliances – A Review. Appl. Therm. Eng. 2011, 31, 3748–3760. DOI: 10.1016/j.applthermaleng.2011.07.023.
  • Hauer, A.; Fischer, F. Open Adsorption System for an Energy Efficient Dishwasher. Chem. Ing. Tech. 2011, 83, 61–66. DOI: 10.1002/cite.201000197.
  • Jeong, S. W.; Lee, D. H. Drying Performance of a Dishwasher with Internal Air Circulation. Korean J. Chem. Eng. 2014, 31, 1518–1521. DOI: 10.1007/s11814-014-0194-0.
  • Bengtsson, P.; Berghel, J. Concept Study of a New Method for Drying Dishware in a Heat Pump Dishwasher. Energy Efficiency 2017, 10, 1–10.
  • Kudra, T.; Pan, Y.-K.; Mujumdar, A. S. Evaporation from Single Droplets Impinging on Heated Surfaces. Drying Technol. 1991, 9, 693–707. DOI: 10.1080/07373939108916704.
  • Makino, K.; Michiyoshi, I. The Behavior of Water Droplets on Heated Surfaces. Int. J. Heat Mass Transfer 1983, 27, 781–791. DOI: 10.1016/0017-9310(84)90147-9.
  • Ruiz, O.; Black, W. Evaporation of Water Droplets Placed on a Heated Horizontal Surface. Trans. ASME 2002, 124, 854–863.
  • Girard, F.; Antoni, M.; Faure, S.; Steinchen, A. Evaporation and Marangoni Driven Convection is Small Heated Water Droplets. Langmuir 2006 22, 11085–11091. DOI: 10.1021/la061572l.
  • Sodtke, C.; Ajaev, V. S.; Stephan, P. Evaporation of Thin Liquid Droplets on Heated Surfaces. Heat Mass Transfer 2006, 43, 649–657. DOI: 10.1007/s00231-006-0126-6.
  • Xu, X.; Luo, J.; Guo, D. Criterion for Reversal of Thermal Marangoni Flow in Drying Drops. Langmuir 2009, 26, 1918–1922. DOI: 10.1021/la902666r.
  • Sobac, B.; Brutin, D. Thermal Effects of the Substrate on Water Droplet Evaporation. Phys. Rev. E 2012, 86, 021602. DOI: 10.1103/physreve.86.021602.
  • Crafton, E.; Black, W. Z. Heat Transfer and Evaporation Rates of Small Liquid Droplets on Heated Horizontal Surfaces. Int. J. Heat Mass Transfer 2004, 47, 1187–1200. DOI: 10.1016/j.ijheatmasstransfer.2003.09.006.
  • Lu, G.; Duan, Y.; Wang, X.; Lee, D. Internal Flow in Evaporating Droplet on Heated Solid Surface. Int. J. Heat Mass Transfer 2011, 54, 4437–4447. DOI: 10.1016/j.ijheatmasstransfer.2011.04.039.
  • Strotos, G.; Gavaises, M.; Theodorakakos, A.; Bergeles, G. Numerical Investigation on the Evaporation of Droplets Depositing on Heated Surfaces at Low Weber Numbers. Int. J. Heat Mass Transfer 2008, 51, 1516–1529. DOI: 10.1016/j.ijheatmasstransfer.2007.07.045.
  • Barmi, M. R.; Meinhart, C. D. Convective Flows in Evaporating Sessile Droplets. J. Phys. Chem. B 2014, 118, 2414–2421. DOI: 10.1021/jp408241f.
  • Thokchom, A. K.; Majumder S. K.; Singh, A. Internal Fluid Motion and Particle Transport in Externally Heated Sessile Droplets. AIChE J. 2016, 62, 1308–1321. DOI: 10.1002/aic.15098.
  • Wang, Z.; Zhao, Y. P. In situ Observation of Thermal Marangoni Convection on the Surface of a Sessile Droplet by Infrared Thermal Imaging. J. Adhes. Sci. Technol. 2012, 26, 2177–2188. DOI: 10.1163/156856111x600523.
  • Savino, R.; Paterna, D.; Favaloro, N. Buoyancy and Marangoni Effects in an Evaporating Drop. J. Thermophys. Heat Transfer 2002, 16, 562–574. DOI: 10.2514/2.6716.
  • Hu, H.; Larson, R. G. Marangoni Effect Reverses Coffee-Ring Depositions. J. Phys. Chem. B 2006, 110, 7090–7095. DOI: 10.1021/jp0609232.
  • Chandra, S.; di Marzo, M.; Qiao, Y. M.; Tartarini, P. Effect of Liquid-Solid Contact Angle on Droplet Evaporation. Fire Saf. J. 1996, 27, 141–158. DOI: 10.1016/s0379-7112(96)00040-9.
  • Schweigler, K. M.; Ben Said, M.; Seifritz, S.; Selzer, M.; Nestler, B. Experimental and Numerical Investigation of Drop Evaporation Depending on the Shape of the Liquid/Gas Interface. Int. J. Heat Mass Transfer 2017, 105, 655–663. DOI: 10.1016/j.ijheatmasstransfer.2016.10.033.
  • Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Contact Line Deposits in an Evaporating Drop. Phys. Rev. E 2000, 62, 756–765. DOI: 10.1103/physreve.62.756.
  • Wang, Z.; Peng, X.-F.; Mujumdar, A. S.; Su, A.; Lee, D.-J. Evaporation of Ethanol-Water Mixture Drop on Horizontal Substrate. Drying Technol. 2008, 26, 806–810. DOI: 10.1080/07373930802046526.
  • Cioulachtjian, S.; Launay S.; Boddaert, S.; Lallemand, M. Experimental Investigation of Water Drop Evaporation Under Moist Air or Saturated Vapour Conditions. Int. J. Therm. Sci. 2010, 49, 859–866. DOI: 10.1016/j.ijthermalsci.2009.12.014.
  • Lecoq, L.; Flick, D.; Laguerre, O. Study of the Water Evaporation Rate on Stainless Steel Plate in Controlled Conditions. Int. J. Therm. Sci. 2017, 111, 450–462. DOI: 10.1016/j.ijthermalsci.2016.09.030.
  • Wu, Y.; Zhang, X.; Zhang, X. Simplified Analysis of Heat and Mass Transfer Model in Droplet Evaporation Process. Appl. Therm. Eng. 2016, 99, 938–943. DOI: 10.1016/j.applthermaleng.2016.01.020.
  • Fu, N., Woo, M. W.; Chen, X. D. Single Droplet Drying Technique to Study Drying Kinetics Measurements and Particle Functionality: A Review. Drying Technol. 2012, 30, 1771–1785. DOI: 10.1080/07373937.2012.708002.
  • Kelly-Zion, P. L.; Pursellb, C. J.; Vaidyaa, S.; Batra, J. Evaporation of Sessile Drops Under Combined Diffusion and Natural Convection. Colloids Surf. A Physicochem. Eng. Aspects 2011, 381, 31–36. DOI: 10.1016/j.colsurfa.2011.03.020.
  • Mollaret, L.; Sefiane, K.; Christy, J. R. E; Veyret, D. Experimental and Numerical Investigation of the Evaporation into Air of a Drop on a Heated Surface. Chem. Eng. Res. Des. 2004, 82, 471–480. DOI: 10.1205/026387604323050182.
  • Ljung, A.-L.; Lindmark, E. M.; Lundström, T. S. Influence of Plate Size on the Evaporation Rate of a Heated Droplet. Drying Technol. 2015, 33, 1963–1970. DOI: 10.1080/07373937.2015.1080722.
  • Ljung, A.-L.; Lundström, T. S. Heat and Mass Transfer Boundary Conditions at the Surface of a Heated Sessile Droplet. Heat Mass Transfer 2017, 53, 3581–3591. DOI: 10.1007/s00231-017-2087-3.
  • Lee, C.; Jang, J.; Hahn, J. W. Theoretical Analysis of Water Droplet Drying on Different Substrates on Liquid Crystal Display Panels Heated with Infrared Radiation. Drying Technol. 2015, 34, 557–562. DOI: 10.1080/07373937.2015.1062025.
  • Hahn, D. W.; Ozisik, M. N. Heat Conduction, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, 2012.
  • Incropera, F. P.; Dewitt, D. P.; Bergman, T. L.; Lavine, A. S. Fundamentals of Heat and Mass Transfer; John Wiley & Sons, Inc.: Hoboken, 2007.
  • Himmelblau, D. M.; Riggs, J. B. Basic Principles and Calculations in Chemical Engineering; Bernard Goodwin: Upper Saddle River, 2004.
  • Vargaftik, N. B.; Volkov, B. N.; Voljak, L. D. International Tables of the Surface Tension of Water. J. Phys. Chem. Ref. Data 1983, 12, 817–820. DOI: 10.1063/1.555688.
  • Carey, V. Liquid-Vapor Phase-Change Phenomena; Hemisphere Publishing Corporation: New York, 1992.
  • Crafton, E. Measurements of the Evaporation Rates of Heated Liquid Droplets. M.Sc. Thesis, Georgia Institute of Technology, Atlanta, 2001.
  • Ranz, W. E.; Marshall, W. R. Evaporation from Drops. Chem. Eng. Progress 1952, 48, 173–180.
  • ANSYS CFX. ANSYS CFX Solver Modeling Guide, Release 15.0. Ansys, Inc.: Canonsburg, 2013.