Publication Cover
Drying Technology
An International Journal
Volume 37, 2019 - Issue 8
635
Views
25
CrossRef citations to date
0
Altmetric
Articles

Application of osmotic dehydration and microwave drying to strawberries coated with edible films

&
Pages 1002-1012 | Received 05 Mar 2018, Accepted 20 May 2018, Published online: 11 Sep 2018

References

  • García-Noguera, J.; Oliveira, F. I. P.; Gallâo, M. I.; Weller, C. L.; Rodrigues, S.; Fernandes, F. A. N. Ultrasound-Assisted Osmotic Dehydration of Strawberries: Effect of Pretreatment Time and Ultrasonic Frequency. Drying Technol. 2010, 28, 294–303.
  • Soria, A. C.; Corzo-Marti´nez, M.; Montilla, A.; Riera, E.; Gamboa-Santos, J.; Villamiel, M. Chemical and Physicochemical Quality Parameters in Carrots Dehydrated by Power Ultrasound. J. Agric. Food Chem. 2010, 58, 7715–7722.
  • Mousa, N.; Farid, M. Microwave Vacuum Drying of Banana Slices. Drying Technol. 2002, 20, 2055–2066.
  • Chandrasekaran, S.; Ramanathan, S.; Basak, T. Microwave Food Processing – A Review. Food Res. Int. 2013, 52, 243–261.
  • Doymaz, I. Convective Drying Kinetics of Strawberry. Chem. Eng. Process. 2008, 47, 914–919.
  • Gamboa-Santos, J.; Montilla, A.; Cárcel, J. A.; Villamiel, M.; García-Pérez, J. V. Air-Borne Ultrasound Application in the Convective Drying of Strawberry. J. Food Eng. 2014, 128, 132–139.
  • Stojanovic, J.; Silva, J. Influence of Osmotic Concentration, Continuous High Frequency Ultrasound and Dehydration on Antioxidants, Colour and Chemical Properties of Rabbiteye Blueberries. Food Chem. 2007, 101, 898–906.
  • Changrue, V.; Orsat, V.; Raghavan, G. S. V.; Lyew, D. Effect of Osmotic Dehydration on the Dielectric Properties of Carrots and Strawberries. J. Food Eng. 2008, 88, 280–286.
  • Contreras, C.; Martín-Esparza, M. E.; Chiralt, A.; Martínez-Navarrete, N. Influence of Microwave Application on Convective Drying: Effects on Drying Kinetics, and Optical and Mechanical Properties of Apple and Strawberry. J. Food Eng. 2008, 88, 55–64.
  • Blanda, G.; Cerretani, L.; Cardinali, A.; Barbieri, S.; Bendini, A.; Lercker, G. Osmotic Dehydrofreezing of Strawberries: Poliphenolics Content, Volatile Profile and Consumer Acceptance. LWT – Food Sci. Tehnol. 2009, 42, 30–36.
  • İspir, A.; Toğrul, İT. Osmotic Dehydration of Apricot: kinetics and the Effect of Process Parameters. Chem. Eng. Res. Design 2009, 87, 166–180.
  • Wojdyło, A.; Figiel, A.; Oszmian´ski, J. Effect of Drying Methods with the Application of Vacuum Microwaves on the Bioactive Compounds, Color, and Antioxidant Activity of Strawberry Fruits. J. Agric. Food Chem. 2009, 57, 1337–1343.
  • Allali, H.; Marchal, L.; Vorobiev, E. Blanching of Strawberry by Ohmic Heating: Effects on the Kinetics of Mass Transfer During Osmotic Dehydration. Food Bioprocess. Technol. 2010, 3, 406–414.
  • Moreno, J.; Simpson, R.; Baeza, A.; Morales, J.; Muñoz, C.; Sastry, S.; Almonacid, S. Effect of Ohmic Heating and Vacuum Impregnation on the Osmodehydration Kinetics and Microstructure of Strawberries (Cv. Camarosa). LWT – Food Sci. Technol. 2012, 45, 148–154.
  • Arballo, J. R.; Campañone, L. A.; Mascheroni, R. H. Modeling of Microwave Drying of Fruits. Part II: Effect of Osmotic Pretreatment on the Microwave Dehydration Process. Drying Technol. 2012, 30, 404–415.
  • Jiang, N.; Liu, C.; Li, D.; Zhou, Y. Effect of Blanching on the Dielectric Properties and Microwave Vacuum Drying Behavior of Agaricus Bisporus Slices. Innov. Food Sci. Emerg. Technol. 2015, 30, 89–97.
  • Wang, J.; Sheng, K. Far-Infrarred and Microwave Drying of Peach. LWT. 2006, 39, 247–255.
  • Askari, G. R.; Emam-Djomeh, Z.; Mousavi, S. M. An Investigation of the Effects of Drying Methods and Conditions on Drying Characteristics and Quality Attributes of Agricultural Products during Hot Air/Microwave-Assisted Dehydration. Drying Technol. 2009, 27, 831–841.
  • Wang, R.; Zhang, M.; Mujumdar, A. S.; Jiang, H. Effect of Salt and Sucrose Content on Dielectric Properties and Microwave Freeze Drying Behavior of Re-Structured Potato Slices. J. Food Eng. 2011, 106, 290–297.
  • Ghanem, N.; Mihoubi, D.; Kechaou, N.; Mihoubi, N. B. Microwave Dehydration of Three Citrus Peel Cultivars. Effects on Water and Oil Retention Capacities, Color, Shrinkage and Total Phenols Content. Ind. Crops Prod. 2012, 40, 167–177.
  • Rastogi, N. K.; Raghavarao, K. S. M. S.; Niranjan, K. Recent Developments in Osmotic Dehydration (Chapter 11). In Emerging Technologies for Food Processing, 2nd ed.; Sun, D-W., Academic Press: London, UK, 2014; pp 181–212.
  • Ahmed, I.; Qazi, I. M.; Jamal, S. Developments in Osmotic Dehydration Technique for the Preservation of Fruits and Vegetables. Innov. Food Sci. Emerg. Technol. 2016, 34, 29–43.
  • Fernandes, F. A. N.; Rodrigues, S.; Gaspareto, O. L. P.; Oliveira, E. L. Optimization of Osmotic Dehydration of Papaya Followed by Air-Drying. Food Res. Int. 2006, 39, 492–498.
  • Fernandes, F. A. N.; Rodrigues, S.; Gaspareto, O. C. P.; Oliveira, E. L. Optimization of Osmotic Dehydration of Bananas Followed by Air-Drying. J. Food Eng. 2006, 77, 188–193.
  • Souza, J. S.; Medeiros, M. F. D.; Magalhâes, M. M. A.; Rodrigues, S.; Fernandes, F. A. N. Optimization of Osmotic Dehydration of Tomatoes in a Ternary System Followed by Air-Drying. J. Food Eng. 2007, 83, 501–509.
  • Ozkoc, S. O.; Sumnu, G.; Sahin, S. Recent Development in Microwave Heating. In: Emerging Technologies for Food Processing; Da-Wen Sun, Ed.; Academic Press: London, UK, 2014; pp 361–383.
  • Dhingra, D.; Singh, J.; Patil, R. T.; Uppal, D. S. Osmotic Dehydration of Fruits and Vegetables: A Review. J. Food Sci. Technol. 2008, 45, 209–217.
  • Khin, M. M.; Zhou, W.; Perera, C. O. A Study of the Mass Transfer in Osmotic Dehydration of Coated Potato Cubes. J. Food Eng. 2006, 77, 84–95.
  • Jalaee, F.; Fazeli, A.; Fatemian, H.; Tavakolipour, H. Mass Transfer Coefficient and the Characteristics of Coated Apples in Osmotic Dehydrating. Food Bioprod. Process. 2011, 89, 367–374.
  • Lago-Vanzela, E. S.; do Nascimento, P.; Fontes, E. A. F.; Mauro, M. A.; Kimura, M. Edible Coatings from Native and Modified Starches Retain Carotenoids in Pumpkin during Drying. LWT – Food Sci. Technol. 2013, 50, 420–425.
  • Ribeiro, C.; Vicente, A. A.; Teixeira, J. A.; Miranda, C. Optimization of Edible Coating Composition to Retard Strawberry Fruit Senescence. Postharvest Biol. Technol. 2007, 44, 63–70.
  • Vu, K. D.; Hollingsworth, R. G.; Leroux, E.; Salmieri, S.; Lacroix, M. Development of Edible Bioactive Coating Based on Modified Chitosan for Increasing the Shelf Life of Strawberries. Food Res. Int. 2011, 44, 198–203.
  • Perdones, A.; Sánchez-González, L.; Chiralt, A.; Vargas, A. Effect of Chitosan – Lemon Essential Oil Coatings on Storage-Keeping Quality of Strawberry. Postharvest Biol. Technol. 2012, 70, 32–41.
  • Gol, N. B.; Patel, P. R.; Ramana Rao, T. V. Improvement of Quality and Shelf-Life of Strawberries with Edible Coatings Enriched with Chitosan. Postharvest Biol. Technol. 2013, 85, 185–195.
  • Sogvar, O. B.; Saba, M. K.; Emamifar, A. Aloe Vera and Ascorbic Acid Coatings Maintain Postharvest Quality and Reduce Microbial Load of Strawberry Fruit. Postharvest Biol. Technol. 2016, 114, 29–35.
  • Khin, M. M.; Zhou, W.; Yeo, S. Y. Mass Transfer in the Osmotic Dehydration of Coated Apple Cubes by Using Maltodextrin as the Coating Material and Their Textural Properties. J. Food Eng. 2007, 81, 514–522.
  • Ferrari, C. C.; Sarantópoulos, C. I. G. L.; Carmello-Guerreiro, S. M.; Hubinger, M. D. Effect of Osmotic Dehydration and Pectin Edible Coatings on Quality and Shelf Life of Fresh-Cut Melon. Food Bioprocess. Technol. 2013, 6, 80–91.
  • Gómez, C. G.; Pérez-Lambrecht, M. V.; Lozano, J. E.; Rinaudo, M.; Villar, M. A. Influence of the Extraction-Purification Conditions on Final Properties of Alginates Obtained from Brown Algae (Macrocystis pyrifera). Int. J. Biol. Macromol. 2009, 44, 365–371.
  • Arzate-Vázquez, I.; Chanona-Pérez, J. J.; Calderón-Domínguez, G.; Terres-Rojas, E.; Garibay-Febles, V.; Martínez-Rivas, A.; Gutiérrez-López, G. F. Microstructual Characterization of Chitosan and Alginate Films by Microscopy Techniques and Texture Image Analysis. Carbohyd. Polym. 2012, 87, 289–299.
  • Machado, R. M.; Palmeira-De-Oliveira, A.; Martínez-De-Oliveira, J.; Palmeira-De-Oliveira, R. Vaginal Films for Drug Delivery. J. Pharm. Sci. 2013, 102, 2069–2081.
  • Li, Z. Y.; Wang, R. F.; Kudra, T. Uniformity Issue in Microwave Drying. Drying Technol. 2011, 29, 652–660.
  • De Bruijn, J.; Bórquez, R. Quality Retention in Strawberries Dried by Emerging Dehydration Methods. Food Res. Int. 2014, 63, 42–48.
  • Piotrowski, D.; Lenart, A.; Wardzyński, A. Influence of Osmotic Dehydration on Microwave-Convective Drying of Frozen Strawberries. J. Food Eng. 2004, 65, 519–525.
  • Gamboa-Santos, J.; Montilla, A.; Soria, A. C.; Villamiel, M. Effects of Conventional and Ultrasound Blanching on Enzyme Inactivation and Carbohydrate Content of Carrots. Eur. Food Res. Technol. 2012, 234, 1071–1079.
  • Rodríguez, A.; García, M. A.; Campañone, L. Experimental Study of the Application of Edible Coatings in Pumpkin Sticks Submitted to Osmotic Dehydration. Drying Technol. 2016, 34, 635–644.
  • Matuska, M.; Lenart, A.; Lazarides, H. N. On the Use of Edible Coatings to Monitor Osmotic Dehydration Kinetics for Minimal Solids Uptake. J. Food Eng. 2006, 72, 85–91.
  • Falade, K. O.; Igbeka, J. C. Osmotic Dehydration of Tropical Fruits and Vegetables. Food Rev. Int. 2007, 23, 373–405.
  • Mundada, M.; Hathan, B. S.; Maske, S. Mass Transfer Kinetics during Osmotic Dehydration of Pomegranate Arils. J. Food Sci. 2011, 75, 31–39.
  • Arballo, J. R. Modelado y simulación de la deshidratación osmótica seguida del secado con microondas de frutihortículas. PhD Thesis, Universidad Nacional de La Plata (UNLP), 2012.
  • AOAC. Method 934.06. In Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed.; Por Helrich, K., Ed.; Association of Official Analytical Chemists: Arlington, VA, 1997; Vol. 1, pp 994.
  • Arballo, J. R.; Campañone, L. A.; Mascheroni, R. Modeling of Microwave Drying of Fruits. Drying Technol. 2010, 28, 1178–1184.
  • Jambrak, A. R.; Mason, T. J.; Paniwnyk, L.; Lelas, V. Ultrasonic Effect on pH, Electric Conductivity, and Tissue Surface of Button Mushrooms, Brussels Sprouts and Cauliflower. Czech J. Food Sci. 2008, 25, 90–100.
  • Rodríguez, A. Comparación de métodos combinados (Ósmosis Directa-Microondas y Secado Convectivo por Aire Caliente-Microondas) para la deshidratación de frutos del bosque y evaluación del equilibrio sorcional de los productos finales. PhD Thesis, Universidad Nacional de La Plata (UNLP), 2014.
  • Simal, S.; Femenia, A.; García-Pascual, P.; Rosselló, C. Simulation of the Drying Curves of a Meat-Based Product: Effect of the External Resistance to Mass Transfer. J. Food Eng. 2003, 58, 193–199.
  • García-Pérez, J. V.; Cárcel, J. A.; Benedito, J.; Mulet, A. Power Ultrasound Mass Transfer Enhancement in Food Drying. Food Bioprod. Process. 2007, 85, 247–254.
  • García-Perez, J. V.; Cárcel, J. A.; Riera, E.; Mulet, A. Influence of the Applied Acoustic Energy on the Drying of Carrots and Lemon Peel. Drying Technol. 2009, 27, 281–287.
  • Crank, J. The Mathematics of Diffusion, 2nd ed.; Clarendon Press: Oxford, UK, 1975.
  • Cárcel, J. A.; Garcia-Perez, J. V.; Riera, E.; Mulet, A. Improvement of Convective Drying of Carrot by Applying Power Ultrasound. Influence of Mass Load Density. Drying Technol. 2011, 29, 174–182.
  • Yao, Z. M.; Le Maguer, M. Mathematical Modelling and Simulation of Mass Transfer in OD Processes. 1. Conceptual and Mathematical Models. J. Food Eng. 1996, 29, 349–360.
  • Lazarides, H. N.; Katsanidis, E.; Nickolaidis, A. Mass Transfer Kinetics during Osmotic Preconcentration Aiming at Minimal Solid Uptake. J. Food Eng. 1995, 25, 151–166.
  • Tavassoli-Kafrani, E.; Shekarchizadeh, H.; Masoudpour-Behabadi, M. Development of Edible Films and Coatings from Alginates and Carrageenans. Carbohydr. Polym. 2016, 137, 360–374.
  • Nussinovitch, A. Biopolymer Films and Composite Coatings. In: Modern Biopolymer Science: Bridging the Divide between Fundamental Treatise and Industrial Application; Kasapis, S., Norton, I. T., Ubbink, J. B. Eds.;, Academic Press: MA, USA, 2009; pp 295–326.
  • Rodrigues, S.; Fernandes, F. A. N. Ultrasound in Fruit Processing. In New Food Engineering Research Trends; Urwaye, A. P., Ed., Nova Science Publishers: Hauppauge, NY, 2007; pp 103–135.
  • Fernandes, F. A. N.; Rodrigues, S. Dehydration of Sapota (Achras sapota L.) Using Ultrasound as Pretreatment. Drying Technol. 2008, 26, 1232–1237.
  • Contreras, C.; Benlloch-Tinoco, M.; Rodrigo, D.; Martínez-Navarrete, N. Impact of Microwave Processing on Nutritional, Sensory, and Other Quality Attributes. In The Microwave Processing of Foods, Woodhead Publishing Series in Food Science, Technology and Nutrition, Woodhead Publishing; Regier, M., Knoerzer, K., Schubert, H., Eds.; 2017; pp 65–99.
  • Prothon, F.; Ahrne, L.; Sjoholm, I. Mechanisms and Prevention of Plant Tissue Collapse during Dehydration: A Critical Review. Crit. Rev. Food Sci. Nutr. 2003, 43, 447–479.
  • García-Pérez, J. V.; Ozuna, C.; Ortuño, C.; Cárcel, J. A.; Mulet, A. Modelling Ultrasonically Assisted Convective Drying of Eggplant. Drying Technol. 2011, 29, 1499–1509.
  • Ramallo, L. A.; Mascheroni, R. H. Effect of Shrinkage on Prediction Accuracy of the Water Diffusion Model for Pinneaple Drying. J. Food Process Eng. 2013, 36, 66–76.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.