Publication Cover
Drying Technology
An International Journal
Volume 37, 2019 - Issue 10
683
Views
59
CrossRef citations to date
0
Altmetric
Articles

Effect of high-humidity hot air impingement blanching (HHAIB) and drying parameters on drying characteristics and quality of broccoli florets

, , , , , , , & show all
Pages 1251-1264 | Received 22 Jan 2018, Accepted 25 Jun 2018, Published online: 07 Jan 2019

References

  • Icier, F.; Colak, N.; Erbay, Z.; Kuzgunkaya, E. H.; Hepbasli, A. A Comparative Study on Exergetic Performance Assessment for Drying of Broccoli Florets in Three Different Drying Systems. Dry. Technol. 2010, 28, 193–204.
  • Jin, X.; van der Sman, R. G. M.; van Straten, G.; Boom, R. M.; Van Boxtel, A. J. B. Energy Efficient Drying Strategies to Retain Nutritional Components in Broccoli (Brassica Oleracea Var. italica). J. Food Eng. 2014, 123, 172–178.
  • Domínguez-Perles, R.; Mena, P.; García-Viguera, C.; Moreno, D. A. Brassica Foods as a Dietary Source of Vitamin C: A Review. Crit. Rev. Food Sci. Nutr. 2014, 54, 1076–1091.
  • Jin, X.; Oliviero, T.; van der Sman, R. G. M.; Verkerk, R.; Dekker, M.; van Boxtel, A. J. B. Impact of Different Drying Trajectories on Degradation of Nutritional Compounds in Broccoli (Brassica Oleracea Var. italica). LWT – Food Sci. Technol. 2014, 59, 189–195.
  • Xu, F. F.; Jin, X.; Zhang, L.; Chen, X. D. Investigation on Water Status and Distribution in Broccoli and the Effects of Drying on Water Status Using NMR and MRI Methods. Food Res. Int. 2017, 96, 191–197.
  • Doymaz, İ.; Sahin, M. Effect of Temperature and Pre-Treatment on Drying and Rehydration Characteristics of Broccoli Slices. Food Measure. 2016, 10, 364–373.
  • Aral, S.; Beşe, A. V. Convective Drying of Hawthorn Fruit (Crataegus Spp.): Effect of Experimental Parameters on Drying Kinetics, Color, Shrinkage, and Rehydration Capacity. Food Chem. 2016, 210, 577–584.
  • Xiao, H. W.; Pan, Z.; Deng, L. Z.; El-Mashad, H. M.; Yang, X. H.; Mujumdar, A. S.; Gao, Z. J.; Zhang, Q. Recent Developments and Trends in Thermal Blanching – A Comprehensive Review. IPA. 2017, 4, 101–127.
  • Deng, L. Z.; Mujumdar, A. S.; Zhang, Q.; Yang, X. H.; Wang, J.; Zheng, Z. A.; Gao, Z. J.; Xiao, H. W. Chemical and Physical Pretreatments of Fruits and Vegetables: Effects on Drying Characteristics and Quality Attributes – A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2017, DOI:10.1080/10408398.2017.1409192.
  • Xiao, H. W.; Bai, J. W.; Sun, D. W.; Gao, Z. J. The Application of Superheated Steam Impingement Blanching (SSIB) in Agricultural Products Processing – A Review. J. Food Eng. 2014, 132, 39–47.
  • Wang, J.; Yang, X. H.; Mujumdar, A. S.; Fang, X. M.; Zhang, Q.; Zheng, Z. A.; Gao, Z. J.; Xiao, H. W. Effects of High-Humidity Hot Air Impingement Blanching (HHAIB) Pretreatment on the Change of Antioxidant Capacity, the Degradation Kinetics of Red Pigment, Ascorbic Acid in Dehydrated Red Peppers During Storage. Food Chem. 2018, 259, 65–72.
  • Wang, J.; Fang, X. M.; Mujumdar, A. S.; Qian, J. Y.; Zhang, Q.; Yang, X. H.; Liu, Y. H.; Gao, Z. J.; Xiao, H. W. Effect of High-Humidity Hot Air Impingement Blanching (HHAIB) on Drying and Quality of Red Pepper (Capsicum annuum L.). Food Chem. 2017, 220, 145–152.
  • Li, G.; Zheng, Y.; Hu, G.; Zhang, Z. Research on Convective Heat Transfer Coefficient with Air Jet Impinging. TCSAE. 2014, 22, 489–484. (in Chinese with English abstract).
  • Xiao, H. W.; Yao, X. D.; Lin, H.; Yang, W. X.; Meng, J. S.; Gao, Z. J. Effect of SSB (Superheated Steam Blanching) Time and Drying Temperature on Hot Air Impingement Drying Kinetics and Quality Attributes of Yam Slices. J. Food Proc. Eng. 2012, 35, 370–390.
  • Bai, J. W.; Sun, D. W.; Xiao, H. W.; Mujumdar, A. S.; Gao, Z. J. Novel High Humidity Hot Air Impingement Blanching (HHAIB) Pretreatment Enhances Drying Kinetics and Color Attributes of Seedless Grapes. Innovat. Food Sci. Emerg. Technol. 2013, 20, 230–237.
  • Bai, J. W.; Gao, Z. J.; Xiao, H. W.; Wang, X. T.; Zhang, Q. Polyphenol Oxidasein Activation and Vitamin C Degradation Kinetics of Fuji Apple Quarters by High Humidity Air Impingement Blanching. Int. J. Food Sci. Technol. 2013, 48, 1135–1141.
  • Xiao, H. W.; Lin, H.; Yao, X. D.; Du, Z. L.; Lou, Z.; Gao, Z. J. Effects of Different Pretreatments on Drying Kinetics and Quality of Sweet Potato Bars Undergoing Air Impingement Drying. Int. J. Food Eng. 2009, 5, 1–17.
  • Devahastin, S.; Niamnuy, C. Modelling Quality Changes of Fruits and Vegetables during Drying: A Review. Int. J. Food Sci. Technol. 2010, 45, 1755–1767.
  • Aghbashlo, M.; Hosseinpour, S.; Mujumdar, A. S. Application of Artificial Neural Networks (ANNs) in Drying Technology: A Comprehensive Review. Dry. Technol. 2015, 33, 1397–1462.
  • Huang, G. B; Zhu, Q. Y.; Siew, C. K. Extreme Learning Machine: A New Learning Scheme of Feedforward Neural Networks. Proc. IEEE Int. Joint Conf. Neural Netw. 2004, 2, 985–990.
  • Huang, G. B. An Insight into Extreme Learning Machines: Random Neurons, Random Features and Kernels. Cogn. Comput. 2014, 6, 376–390.
  • Huang, G.; Huang, G. B.; Song, S.; You, K. Trends in Extreme Learning Machines: A Review. Neural Netw. 2015, 61, 32–48.
  • Malathi, V.; Marimuthu, N. S.; Baskar, S.; Ramar, K. Application of Extreme Learning Machine for Series Compensated Transmission Line Protection. Eng. Appl. Artif. Intell. 2011, 24, 880–887.
  • Martinez-Martinez, J. M.; Escandell-Montero, P.; Soria-Olivas, E.; Martin-Guerrero, J. D.; Magdalena-Benedito, R.; Gómez-Sanchis, J. Regularized Extreme Learning Machine for Regression Problems. Neurocomputing. 2011, 74, 3716–3721.
  • Deo, R. C.; Şahin, M. Application of the Extreme Learning Machine Algorithm for the Prediction of Monthly Effective Drought Index in Eastern Australia. Atmos. Res. 2015, 153, 512–525.
  • Viswanathan, R.; Samui, P. Determination of Rock Depth Using Artificial Intelligence Techniques. Geosci. Frontier. 2016, 7, 61–66.
  • Balbay, A.; Kaya, Y.; Sahin, O. Drying of Black Cumin (Nigellasativa) in a Microwave Assisted Drying System and Modeling Using Extreme Learning Machine. Energy. 2012, 44, 352–357.
  • Balbay, A.; Avci, E.; Şahin, Ö.; Coteli, R. Modeling of Drying Process of Bittim Nuts (Pistacia Terebinthus) in a Fixed Bed Dryer System by Using Extreme Learning Machine. Int. J. Food Eng. 2012, 8, 1–18.
  • AOAC. Official Method of Analysis; Association of Official Analytical Chemists (No. 934.06): Arlington, VA, 1990.
  • Xie, Y.; Gao, Z.; Liu, Y.; Xiao, H. Pulsed Vacuum Drying of Rhizoma Dioscoreae Slices. LWT – Food Sci. Technol. 2017, 80, 237–249.
  • Xie, L.; Mujumdar, A. S.; Zhang, Q.; Wang, J.; Liu, S.; Deng, L. Z.; Wang, D.; Xiao, H. W.; Liu, Y. H.; Gao, Z. J. Effects of Pulsed Vacuum Drying on Infrared Radiation Heating (PVD-FIR) and Electronic Panel Contact Heating (PVD-EPC) on Drying Kinetics, Colour and Volatile Compounds of Wolfberry. Dry. Technol. 2017, 35, 1312–1326.
  • Deng, L. Z.; Mujumdar, A. S.; Yang, X. H.; Wang, J.; Zhang, Q.; Zheng, Z. A.; Gao, Z. J.; Xiao, H. W. High Humidity Hot Air Impingement Blanching (HHAIB) Enhances Drying Rate and Softens Texture of Apricot via Cell Wall Pectin Polysaccharides Degradation and Ultrastructure Modification. Food Chem. 2018, 261, 292–300.
  • Wang, J.; Bai, T. Y.; Wang, D.; Fang, X. M.; Xue, L. Y.; Zheng, Z. A.; Gao, Z. J.; Xiao, H. W. Pulsed Vacuum Drying of Chinese Ginger (Zingiber Officinale Roscoe) Slices: Effects on Drying Characteristics, Rehydration Ratio, Water Holding Capacity, and Microstructure. Dry. Technol. 2018, 1. DOI:10.1080/07373937.2017.1423325
  • Wang, J.; Law, C. L.; Nema, P. K.; Zhao, J. H.; Liu, Z. L.; Deng, L. Z.; Gao, Z. J.; Xiao, H. W. Pulsed Vacuum Drying Enhances Drying Kinetics and Quality of Lemon Slices. J. Food Eng. 2018, 224, 129–138.
  • Xiao, H. W.; Law, C. L.; Sun, D. W.; Gao, Z. J. Color Change Kinetics of American Ginseng (Panax Quinquefolium) Slices during Air Impingement Drying. Dry. Technol. 2014, 32, 418–427.
  • Vernon, L. P. Spectrophotometric Determination of Chlorophylls and Pheophytins in Plant Extracts. Anal. Chem. 1960, 32, 1144–1150.
  • AOAC. Official Method of Analysis, 17th ed., (no. 967.21 Ascorbic acid in vitamin preparation and juices); Association of Official Analytical Chemists: Gaithersburg, MD.
  • Martínez-Martínez, V.; Gomez-Gil, J.; Stombaugh, T. S.; Montross, M. D.; Aguiar, J. M. Moisture Content Prediction in the Switchgrass (Panicum Virgatum) Drying Process Using Artificial Neural Networks. Dry. Technol. 2015, 33, 1708–1719.
  • Abdoli, B.; Zare, D.; Jafari, A.; Chen, G. Evaluation of the Air-Borne Ultrasound on Fluidized Bed Drying of Shelled Corn: Effectiveness, Grain Quality, and Energy Consumption. Dry. Technol. 2018, 36 1749–176. doi: 10.1080/07373937.2018.1423568.
  • Giacosa, S.; Torchio, F.; Segade, S. R.; Caudana, A.; Gerbi, V.; Rolle, L. Varietal Relationship between Skin Break Force and off-Vine Withering Process for Winegrapes. Dry. Technol. 2012, 30, 726–732.
  • Thuwapanichayanan, R.; Prachayawarakorn, S.; Kunwisawa, J.; Soponronnarit, S. Determination of Effective Moisture Diffusivity and Assessment of Quality Attributes of Banana Slices during Drying. LWT – Food Sci. Technol. 2011, 44, 1502–1510.
  • Deng, L. Z.; Yang, X. H.; Mujumdar, A. S.; Zhao, J. H.; Wang, D.; Zhang, Q.; Wang, J.; Gao, Z. J.; Xiao, H. W. Red Pepper (Capsicum Annuum L.) Drying: Effects of Different Drying Methods on Drying Kinetics, Physicochemical Properties, Antioxidant Capacity, and Microstructure. Dry. Technol. 2018, 36, 893–907.
  • Khatchatourian, O. A. Experimental Study and Mathematical Model for Soya Bean Drying in Thin Layer. Biosystem. Eng. 2012, 113, 54–64.
  • Rybarczyk-Plonska, A.; Hansen, M. K.; Wold, A. B.; Hagen, S. F.; Borge, G. I. A.; Bengtsson, G. B. Vitamin C in Broccoli (Brassica Oleracea L. var. italica) Flower Buds As Affected by Postharvest Light, UV-B Irradiation and Temperature. Postharvest Biol. Technol. 2014, 98, 82–89.
  • Vega-Gálvez, A.; Di Scala, K.; Rodríguez, K.; Lemus-Mondaca, R.; Miranda, M.; López, J.; Perez-Won, M. Effect of Air-Drying Temperature on Physicochemical Properties, Antioxidant Capacity, Colour and Total Phenolic Content Ofred Pepper (Capsicum Annuum, L. var. Hungarian). Food Chem. 2009, 117, 647–653.
  • Goula, A. M.; Adamopoulos, K. G. Retention of Ascorbic Acid during Drying of Tomato Halves and Tomato Pulp. Dry. Technol. 2006, 24, 57–64.
  • Ihl, M.; Monsalves, M.; Bifani, V. Chlorophyllase Inactivation as a Measure of Blanching Efficacy and Colour Retention of Artichokes (Cynara Scolymus L.). LWT – Food Sci. Technol. 1998, 31, 50–56.
  • Yang, X. H.; Deng, L. Z.; Mujumdar, A. S.; Xiao, H. W.; Zhang, Q.; Kan, Z. Evolution and Modeling of Colour Changes of Red Pepper (Capsicum Annuum L.) during Hot Air Drying. J. Food Eng. 2018, 231, 101–108.
  • Kaewsuksaeng, S.; Yamauchi, N.; Funamoto, Y.; Mori, T.; Shigyo, M.; Kanlayanarat, M. Effect of Heat Treatment on Catabolites Formation in Relation to Chlorophyll Degradation during Storage of Broccoli (Brassica Olearacea L. Italica Group) Florets. J. Japan. Soc. Hort. Sci. 2007, 76, 338–344.
  • Quitão-Teixeira, L. J.; Aguiló-Aguayo, I.; Ramos, A. M.; Martín-Belloso, O. Inactivation of Oxidative Enzymes by Highintensity Pulsed Electric Field for Retention of Color in Carrot Juice. Food Bioprocess. Technol. 2008, 1, 364–373.
  • Tian, M. S.; Woolf, A. B.; Bowen, J. H.; Ferguson, I. B. Changes in Color and Chlorophyll Fluorescence of Broccoli Florets following Hot Water Treatment. J. Am. Soc. Horticult. 1996, 121, 310–313.
  • Samui, P.; Dixon, B. Application of Support Vector Machine and Relevance Vector Machine to Determine Evaporative Losses Inreservoirs. Hydrol. Process. 2012, 26, 1361–1369.
  • Lertworasirikul, S.; Tipsuwan, Y. Moisture Content and Water Activity Prediction of Semi-Finished Cassava Crackers from Drying Process with Artificial Neural Network. J. Food Eng. 2008, 84, 65–74.
  • Nadian, M. H.; Rafiee, S.; Aghbashlo, M.; Hosseinpour, S.; Mohtasebi, S. S. Continuous Real-Time Monitoring and Neural Network Modeling of Apple Slices Color Changes during Hot Air Drying. Food. Bioprod. Process. 2015, 94, 263–274.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.