Publication Cover
Drying Technology
An International Journal
Volume 37, 2019 - Issue 13
172
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Enhancement of biological fermented sludge dewaterability by inoculation of filamentous fungi Mucor circinelloides XY-Z and Penicillium oxalicum LY-1

, , , , &
Pages 1678-1687 | Received 19 Jan 2018, Accepted 01 Oct 2018, Published online: 18 Jan 2019

References

  • Peeters, B. Mechanical Dewatering and Thermal Drying of Sludge in a Single Apparatus. Drying Technol. 2010, 28, 454–459.
  • Mowla, D.; Tran, H. N.; Allen, D. G. A Review of the Properties of Biosludge and Its Relevance to Enhanced Dewatering Processes. Biomass Bioenergy 2013, 58, 365–378.
  • Perazzini, H.; Freire, F. B.; Freire, F. B.; Freire, J. T. Thermal Treatment of Solid Wastes Using Drying Technologies: A Review. Drying Technol. 2016, 34, 39–52.
  • Bala, S. S.; Yan, S.; Tyagi, R. D.; Surampalli, R. Y. Extracellular Polymeric Substances (EPS) Producing Bacterial Strains of Municipal Wastewater Sludge: Isolation, Molecular Identification, EPS Characterization and Performance for Sludge Settling and Dewatering. Water Res. 2010, 44, 2253–2266.
  • Gao, J.; Shen, Y.; Li, L.; Gao, J.; Li, Y.; Liu, C.; Chen, J. Enhancing Dewaterability of Sewage Sludge by the Application of Tween-20 during Bioleaching: Performance Evaluation and Mechanistic Study. Drying Technol. 2017, 36, 780–789.
  • Chen, W. Optimization of Sludge Dewatering through Pretreatment, Equipment Selection, and Testing. Drying Technol. 2013, 31, 193–201.
  • Tosoni, J.; Baudez, J. C.; Girault, R. Effect of Operating Parameters on the Dewatering Performance of Press Filters: A Sensitivity Analysis. Drying Technol. 2015, 33, 1327–1338.
  • Novak, J. T. The Role of Organic Colloids in Dewatering. Drying Technol. 2010, 28, 871–876.
  • Chen, S. H.; Liu, J. C.; Cheng, G. H.; Chang, W.-C. Conditioning and Dewatering of Phosphorus-Rich Biological Sludge. Drying Technol. 2006, 24, 1217–1223.
  • Dentel, S. K.; Lee, D. J. Chemical Conditioning for Solid-Liquid Separation Processes. Drying Technol. 2010, 28, 843–849.
  • Feng, G.; Tan, W.; Geng, Y.; He, Z.; Liu, L. Optimization Study of Municipal Sludge Conditioning, Filtering, and Expressing Dewatering by Partial Least Squares Regression. Drying Technol. 2014, 32, 841–850.
  • Zhou, J.; Zheng, G.; Zhang, X.; Zhou, L. Influences of Extracellular Polymeric Substances on the Dewaterability of Sewage Sludge during Bioleaching. PLoS One 2014, 9, e102688.
  • Mohammadi, Z.; Azhdarpoor, A.; Dehghani, M. Stabilization and Dewatering of Wastewater Treatment Plant Sludge Using Combined Bio/Fenton-Like Oxidation Process. Drying Technol. 2016, 35, 545–552.
  • Iakovleva, E.; Sillanpää, M. The Use of Low-Cost Adsorbents for Wastewater Purification in Mining Industries. Environ. Sci. Pollut. Res. 2013, 20, 7878–7899.
  • Liu, F. W.; Song, Y. W.; Zheng, C. C.; Zhou, L. X. Effects and Influencing Factors of Bioleached Sewage Sludge Natural Drying and Incineration. Chin. J. Environ. Eng. 2012, 6, 4624–4630.
  • Huo, M.; Zheng, G.; Zhou, L. Enhancement of the Dewaterability of Sludge During Bioleaching Mainly Controlled by Microbial Quantity Change and the Decrease of Slime Extracellular Polymeric Substances Content. Bioresour. Technol. 2014, 168, 190–197.
  • Wang, Z.; Zheng, G.; Zhou, L. Degradation of Slime Extracellular Polymeric Substances and Inhibited Sludge Flocs Destruction Contribute to Sludge Dewaterability Enhancement During Fungal Treatment of Sludge Using Filamentous Fungus Mucor sp.GY-1. Bioresour. Technol. 2015, 192, 514–521.
  • Li, J.; Lei, C.; Dong, S.; Shim, H. Bioremediation of Mixed Wastes (BTEX, TPH, TCE, and cis-DCE) Contaminated Water. J. Hazard. Toxic. Radioact. Waste 2011, 15, 160–165.
  • More, T. T.; Yan, S.; Tyagi, R. D.; Surampalli, R. Y. Potential Use of Filamentous Fungi for Wastewater Sludge Treatment. Bioresour. Technol. 2010, 101, 7691–7700.
  • Molla, A. H.; Fakhru’L-Razi, A. Mycoremediation—A Prospective Environmental Friendly Technique of Bioseparation and Dewatering of Domestic Wastewater Sludge. Environ. Sci. Pollut. Res. 2012, 19, 1612–1619.
  • Murugesan, K.; Selvam, A.; Wong, J. W. Flocculation and Dewaterability of Chemically Enhanced Primary Treatment Sludge by Bioaugmentation with Filamentous Fungi. Bioresour. Technol. 2014, 168, 198–203.
  • Rahman, R. A.; Molla, A. H.; Fakhru’l-Razi, A. Assessment of Sewage Sludge Bioremediation at Different Hydraulic Retention Times Using Mixed Fungal Inoculation by Liquid-State Bioconversion. Environ. Sci. Pollut. Res. 2014, 21, 1178–1187.
  • Molla, A. H.; Fakhru'L-Razi, A.; Abd-Aziz, S.; Hanafi, M. M.; Alam, M. Z. In-Vitro, Compatibility Evaluation of Fungal Mixed Culture for Bioconversion of Domestic Wastewater Sludge. World J. Microbiol. Biotechnol. 2001, 17, 849–856.
  • Fleury, S. Method for Treatment of Sewage Plant Sludges by a Fungal Process. US, 2007, US 7270751.
  • Alam, M. Z.; Fakhru’L-Razi, A. Enhanced Settleability and Dewaterability of Fungal Treated Domestic Wastewater Sludge by Liquid State Bioconversion Process. Water Res. 2003, 37, 1118–1124.
  • Fakhru'L-Razi, A.; Alam, M. Z.; Idris, A.; Suraini, A. A.; Molla, A. H. Domestic Wastewater Biosolids Accumulation by Liquid State Bioconversion Process for Rapid Composting. J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng. 2002, 37, 1533–1543.
  • Jin, B.; Wilén, B. M.; Lant, P. Impacts of Morphological, Physical and Chemical Properties of Sludge Flocs on Dewaterability of Activated Sludge. Chem. Eng. J. 2004, 98, 115–126.
  • Xu, H.; Ding, T. Influence of Vacuum Pressure, pH, and Potential Gradient on the Vacuum Electro-Osmosis Dewatering of Drinking Water Treatment Sludge. Drying Technol. 2016, 34, 1107–1117.
  • Mao, H.; Wang, F.; Mao, F.; Chi, Y.; Lu, S.; Cen, K. Measurement of Water Content and Moisture Distribution in Sludge by H Nuclear Magnetic Resonance Spectroscopy. Drying Technol. 2016, 34, 267–274.
  • He, J.; Pang, H.; Zheng, Y.; Jiang, T.; Xin, Z.; Zhang, P.; Zhang, P. Breakage–Reflocculation Implemented by Two-Stage Shear for Enhancing Waste-Activated Sludge Dewaterability: Effects of Shear Condition and Extracellular Polymeric Substances. Drying Technol. 2018, 36, 418–434.
  • Tuan, P.; Mika, S.; Pirjo, I. Sewage Sludge Electro-Dewatering Treatment—A Review. Drying Technol. 2012, 30, 691–706.
  • Yu, G. H.; He, P. J.; Shao, L. M.; He, P. P. Stratification Structure of Sludge Flocs with Implications to Dewaterability. Environ. Sci. Technol. 2008, 42, 7944–7949.
  • Liu, Y.; Fang, H. H. P. Influences of Extracellular Polymeric Substances (EPS) on Flocculation, Settling, and Dewatering of Activated Sludge. Crit. Rev. Environ. Sci. Technol. 2003, 33, 237–273.
  • Higgins, M. J.; Novak, J. T. Dewatering and Settling of Activated Sludges: The Case for Using Cation Analysis. Water Environ. Res. 1997, 69, 225–232.
  • APHA. 2005. Standard Methods for the Examination of Water and Wastewater, 21st ed. American Public Health Association: Washington, DC.
  • Zhou, Y. J.; Fu, H. Y.; Fan, X. F.; Wang, Z. Y.; Zheng, G. Y. Isolation of Filamentous Fungi Capable of Enhancing Sludge Dewaterability and Study of Mechanisms Responsible for the Sludge Dewaterability Enhancement. Environ. Sci. 2015, 36, 612–618. (in Chinese)
  • Smith, J. K.; Vesilind, P. A. Dilatometric Measurement of Bound Water in Wastewater Sludge. Water Res. 1995, 29, 2621–2626.
  • Zhang, W. J.; Yang, P.; Xiao, P.; Xu, S. W.; Liu, Y. Y.; Liu, F.; Wang, D. S. Dynamic Variation in Physicochemical Properties of Activated Sludge Floc from Different WWTPs and Its Influence on Sludge Dewaterability and Settleability. Colloids Surf. A 2015, 467, 124–134.
  • Wong, J. W.; Zhou, J.; Kurade, M. B.; Murugesan, K. Influence of Ferrous Ions on Extracellular Polymeric Substances Content and Sludge Dewaterability During Bioleaching. Bioresour. Technol. 2015, 179, 78–83.
  • Bo, F.; Palmgren, R.; Keiding, K.; Nielsen, P. H. Extraction of Extracellular Polymers from Activated Sludge Using a Cation Exchange Resin. Water Res. 1996, 30, 1749–1758.
  • Frolund, B.; Griebe, T.; Nielsen, P. H. Enzymatic Activity in the Activated-Sludge Floc Matrix. Appl. Microbiol. Biotechnol. 1995, 43, 755–761.
  • Sawalha, O.; Scholz, M. Modeling the Relationship between Capillary Suction Time and Specific Resistance to Filtration. J. Environ. Eng. 2010, 136, 983–991.
  • Apul, O. G.; Atalar, I.; Zorba, G. T.; Sanin, F. D. The Dewaterability of Disintegrated Sludge Samples before and after Anaerobic Digestion. Drying Technol. 2010, 28, 901–909.
  • Subramanian, S. B.; Song, Y.; Tyagi, R. D.; Surampalli, R. Y. SSPRSD Using a Filamentous Fungal Strain Penicillium Expansum BS30 Isolated from Wastewater Sludge. J. Environ. Eng. 2010, 136, 719–730.
  • Subramanian, S. B.; Yan, S.; Tyagi, R. D.; Surampalli, R. Y. A New, Pellet-Forming Fungal Strain: Its Isolation, Molecular Identification, and Performance for Simultaneous Sludge-Solids Reduction, Flocculation, and Dewatering. Water Environ. Res. 2008, 80, 840–852.
  • Dilek Sanin, F.; Vatansever, A.; Turtin, I.; Kara, F.; Durmaz, B.; Sesay, M. L. Operational Conditions of Activated Sludge: Influence on Flocculation and Dewaterability. Drying Technol. 2006, 24, 1297–1306.
  • Zhang, L.; Feng, X.; Zhu, N.; Chen, J. Role of Extracellular Protein in the Formation and Stability of Aerobic Granules. Enzyme Microb. Technol. 2007, 41, 551–557.
  • Zhu, L.; Lv, M. L.; Dai, X.; Yu, Y. W.; Qi, H. Y.; Xu, X. Y. Role and Significance of Extracellular Polymeric Substances on the Property of Aerobic Granule. Bioresour. Technol. 2012, 107, 46–54.
  • Wawrzynczyk, J.; Szewczyk, E.; Norrlöw, O.; Dey, E. S. Application of Enzymes, Sodium Tripolyphosphate and Cation Exchange Resin for the Release of Extracellular Polymeric Substances from Sewage Sludge. Characterization of the Extracted Polysaccharides/Glycoconjugates by a Panel of Lectins. J. Biotechnol. 2007, 130, 274–281.
  • Song, Y.; Zheng, G.; Huo, M.; Zhao, B.; Zhou, L. Extracellular Polymeric Substances and Bound Water Drastically Affect Bioleached Sludge Dewaterability at Low Temperature. Environ. Technol. 2014, 35, 2538–2545.
  • Lee, D. J.; Lai, J. Y.; Mujumdar, A. S. Moisture Distribution and Dewatering Efficiency for Wet Materials. Drying Technol. 2006, 24, 1201–1208.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.