Publication Cover
Drying Technology
An International Journal
Volume 37, 2019 - Issue 15
1,164
Views
41
CrossRef citations to date
0
Altmetric
Original Articles

Recent developments in physical field-based drying techniques for fruits and vegetables

, , &
Pages 1954-1973 | Received 06 Sep 2018, Accepted 07 Nov 2018, Published online: 21 Jan 2019

References

  • Xu, Y.; Li, Y.; Bao, T.; Zheng, X.; Chen, W.; Wang, J. A Recyclable Protein Resource Derived from Cauliflower by-Products: Potential Biological Activities of Protein Hydrolysates. Food Chemist. 2017, 221, 114–122.
  • Huang, L-l.; Zhang, M. Trends in Development of Dried Vegetable Products as Snacks. Drying Technol. 2012, 30, 448–461.
  • Aghbashlo, M.; Hosseinpour, S.; Mujumdar, A. S. Application of Artificial Neural Networks (anns) in Drying Technology: A Comprehensive Review. Drying Technol. 2015, 33, 1397–1462.
  • Yang, F.; Zhang, M.; Mujumdar, A. S.; Zhong, Q.; Wang, Z. Enhancing Drying Efficiency and Product Quality Using Advanced Pretreatments and Analytical Tools—An Overview. Drying Technol., 2018, 36, 1–15.
  • Jin, W.; Mujumdar, A. S.; Zhang, M.; Shi, W. Novel Drying Techniques for Spices and Herbs: A Review. Food Eng. Rev. 2018, 10, 34–45.
  • Mujumdar, A. S. Drying principles, classification, and selection of dryers, In Handbook of Industrial Drying, Mujumdar, A.S., Ed.; CRC Press: Boca Raton, FL. 2014; pp 4–28.
  • Dehghannya, J.; Bozorghi, S.; Heshmati, M. K. Low Temperature Hot Air Drying of Potato Cubes Subjected to Osmotic Dehydration and Intermittent Microwave: Drying Kinetics, Energy Consumption and Product Quality Indexes. Heat Mass Transf. 2018, 54, 929–954.
  • Politowicz, J.; Lech, K.; Sánchez-Rodríguez, L.; Figiel, A.; Szumny, A.; Grubor, M.; Carbonell-Barrachina, Á. A. Volatile Composition and Sensory Profile of Oyster Mushroom as Affected by Drying Method. Drying Technol. 2018, 36, 685–696.
  • Aghbashlo, M. Exergetic Simulation of a Combined Infrared-Convective Drying Process. Heat Mass Transf. 2016, 52, 829–844.
  • Valarmathi, T. N.; Sekar, S.; Purushothaman, M.; Sekar, S. D.; Reddy, M. R.; Kumar Reddy, K. R. N. Recent developments in drying of food products. Presented at the2nd International Conference on Frontiers in Automobile and Mechanical Engineering, July 7, 2016–July 9, 2016. 2017. Chennai, India: Institute of Physics Publishing.
  • Roohinejad, S.; Parniakov, O.; Nikmaram, N.; Greiner, R.; Koubaa, M. Energy Saving Food Processing. In Sustainable Food Systems from Agriculture to Industry, Galanakis, C.M., Ed.; Academic Press: Cambridge, 2018; pp 191–243.
  • Chou, S. K.; Chua, K. J. New Hybrid Drying Technologies for Heat Sensitive Foodstuffs. Trends Food Sci. Technol. 2001, 12, 359–369.
  • Onwude, D. I.; Hashim, N.; Chen, G. Recent Advances of Novel Thermal Combined Hot Air Drying of Agricultural Crops. Trends Food Sci. Technol. 2016, 57, 132–145.
  • Onwude, D. I.; Hashim, N.; Janius, R.; Abdan, K.; Chen, G.; Oladejo, A. O. Non-Thermal Hybrid Drying of Fruits and Vegetables: A Review of Current Technologies. Innovative Food Sci. Emerg. Technol. 2017, 43, 223–238.
  • Moses, J. A.; Norton, T.; Alagusundaram, K.; Tiwari, B. K. Novel Drying Techniques for the Food Industry. Food Eng. Rev. 2014, 6, 43–55.
  • Harishchandra, V. K.; Umesh, H. H.; Srinivasa, R. K. S. M. Hot Air Assisted Infrared Drying of Vegetables and Its Quality. Food Sci. Technol. Res. 2010, 16, 381–388.
  • Zhang, M.; Chen, H.; Mujumdar, A. S.; Tang, J.; Miao, S.; Wang, Y. Recent Developments in High-Quality Drying of Vegetables, Fruits, and Aquatic Products. Crit. Rev. Food Sci. Nutr. 2017, 57, 1239–1255.
  • Zhang, M.; Chen, H.; Mujumdar, A. S.; Zhong, Q.; Sun, J. Recent Developments in High-Quality Drying with Energy-Saving Characteristic for Fresh Foods. Drying Technol. 2015, 33, 1590–1600.
  • Talens, C.; Castro-Giraldez, M.; Fito, P. J. A Thermodynamic Model for Hot Air Microwave Drying of Orange Peel. J. Food Eng. 2016, 175, 33–42.
  • Zhou, X.; Wang, S. Recent Developments in Radio Frequency Drying of Food and Agricultural Products: A Review. Drying Technol. 2018, 1–16. DOI:10.1080/07373937.2018.1452255.
  • Raghavan, V. O.; Nonconventional heating sources during drying, In Advances in Food Dehydration, Ratti, C., Ed.; CRC Press Taylor & Francis Publishing: Boca Raton, FL, 2008; pp 401–422.
  • Jiao, Y.; Tang, J.; Wang, Y.; Koral, T. L. Radio-Frequency Applications for Food Processing and Safety. Annu. Rev. Food Sci. Technol. 2018. 9, 105–127.
  • Wray, D.; Ramaswamy, H. S. Novel Concepts in Microwave Drying of Foods. Drying Technol. 2015, 33, 769–783.
  • Aghilinategh, N.; Rafiee, S.; Gholikhani, A.; Hosseinpur, S.; Omid, M.; Mohtasebi S. S; Maleki N. A Comparative Study of Dried Apple Using Hot Air, Intermittent and Continuous Microwave: Evaluation of Kinetic Parameters and Physicochemical Quality Attributes. Food Sci. Nutr. 2015, 3, 519–526.
  • Junqueira, J. R. D. J.; Correa, J. L. G.; Ernesto, D. B. Microwave, Convective, and Intermittent Microwaveconvective Drying of Pulsed Vacuum Osmodehydrated Pumpkin Slices. J. Food Process. Preserv. 2017, 41, 1–8.
  • Dehghannya, J.; Hosseinlar, S.-H.; Heshmati, M. K. Multi-Stage Continuous and Intermittent Microwave Drying of Quince Fruit Coupled with Osmotic Dehydration and Low Temperature Hot Air Drying. Innovative Food Sci. Emerg. Technol. 2018, 45(Supplement C), 132–151.
  • Cuccurullo, G.; Giordano, L.; Metallo, A.; Cinquanta, L. Influence of Mode Stirrer and Air Renewal on Controlled Microwave Drying of Sliced Zucchini. Biosyst. Eng. 2017, 158, 95–101.
  • Cuccurullo, G.; Giordano, L.; Metallo, A.; Cinquanta, L. Drying Rate Control in Microwave Assisted Processing of Sliced Apples. Biosyst. Eng. 2018, 170, 24–30.
  • Szadzińska, J.; Kowalski, S. J.; Stasiak, M. Microwave and Ultrasound Enhancement of Convective Drying of Strawberries: Experimental and Modeling Efficiency. Int. J. Heat Mass Transf. 2016, 103, 1065–1074.
  • Dehghannya, J.; Farshad, P.; & Heshmati, M.K. Three-Stage Hybrid Osmoticintermittent Microwaveconvective Drying of Apple at Low Temperature and Short Time. Drying Technol. 2018, 36, 1–24.
  • Song, Z.; Jing, C.; Yao, L.; Zhao, X.; Sun, J.; Wang, W.; Mao, Y.; Ma, C. Coal Slime Hot Air/Microwave Combined Drying Characteristics and Energy Analysis. Fuel Process. Technol. 2017, 156, 491–499.
  • Cinquanta, L.; Albanese, D.; Fratianni, A.; Fianza, G.L.; & Di Matteo, M. Antioxidant Activity and Sensory Attributes of Tomatoes Dehydrated by Combination of Microwave and Convective Heating. Agro Food Industry Hi-Tech. 2013, 24, 35–38.
  • Paengkanya, S.; Soponronnarit, S.; Nathakaranakule, A. Application of Microwaves for Drying of Durian Chips. Food Bioproducts Process. 2015, 96, 1–11.
  • Salim, N. S. M.; Gariépy, Y.; &Raghavan, V. Hot Air Drying and Microwave-Assisted Hot Air Drying of Broccoli Stalk Slices (Brassica oleraceal. Var. Italica.). J. Food Process. Preserv. 2017, 41, 1–9.
  • Miraei Ashtiani, S.-H.; Sturm, B.; Nasirahmadi, A. Effects of Hot-Air and Hybrid Hot Air-Microwave Drying on Drying Kinetics and Textural Quality of Nectarine Slices. Heat Mass Transf. 2018, 54, 915–927.
  • Horuz, E.; Bozkurt, H.; Karataş, H.; Maskan, M. Comparison of Quality, Bioactive Compounds, Textural and Sensorial Properties of Hybrid and Convection-Dried Apricots. Food Measure. 2018, 12, 243–256.
  • Talens, C.; Castro-Giraldez, M.; Fito, P. J. Effect of Microwave Power Coupled with Hot Air Drying on Sorption Isotherms and Microstructure of Orange Peel. Food Bioprocess Technol. 2018, 11, 723–734.
  • Mirzabeigi Kesbi, O.; Sadeghi, M.; Mireei, S. A. Quality Assessment and Modeling of Microwave-Convective Drying of Lemon Slices. Eng. Agric. Environ. Food. 2016, 9, 216–223.
  • Koné, K. Y.; Druon, C.; Gnimpieba, E. Z.; Delmotte, M.; Duquenoy, A.; Laguerre, J.-C. Power Density Control in Microwave Assisted Air Drying to Improve Quality of Food. J. Food Eng. 2013, 119, 750–757.
  • Zhao, D.; An, K.; Ding, S.; Liu, L.; Xu, Z.; Wang, Z. Two-Stage Intermittent Microwave Coupled with Hot-Air Drying of Carrot Slices: Drying Kinetics and Physical Quality. Food Bioprocess Technol. 2014, 7, 2308–2318.
  • Das, I.; Arora, A. Alternate Microwave and Convective Hot Air Application for Rapid Mushroom Drying. J. Food Eng. 2018, 223, 208–219.
  • Ojha, K. S.; Tiwari, B. K.; &O’Donnell, C. P. Effect of Ultrasound Technology on Food and Nutritional Quality. Advances in Food and Nutrition Research. Academic Press: Cambridge, 2018.
  • Alibas, I. Microwave, Air and Combined Microwave-Air Drying of Grape Leaves (Vitis vinifera l.) and the Determination of Some Quality Parameters. Int. J. Food Eng. 2014, 10, 69–88.
  • Łechtańska, J. M.; Szadzińska, J.; Kowalski, S. J. Microwave- and Infrared-Assisted Convective Drying of Green Pepper: Quality and Energy Considerations. Chemical Eng Proces. Process Intensif. 2015, 98, 155–164.
  • An, K.; Zhao, D.; Wang, Z.; Wu, J.; Xu, Y.; Xiao, G. Comparison of Different Drying Methods on Chinese Ginger (Zingiber officinale roscoe): Changes in Volatiles, Chemical Profile, Antioxidant Properties, and Microstructure. Food Chemist. 2016, 197, 1292–1300.
  • Zhao, G.; Zhang, R.; Liu, L.; Deng, Y.; Wei, Z.; Zhang, Y.; Ma, Y.; Zhang, M. Different Thermal Drying Methods Affect the Phenolic Profiles, Their Bioaccessibility and Antioxidant Activity in Rhodomyrtus Tomentosa (ait.) Hassk Berries. LWT Food Sci. Technol. 2017, 79, 260–266.
  • Jiang, H.; Shen, Y.; Zhen, L.; Li, W.; Zhang, Q. Evaluation of Strawberries Dried by Radio Frequency Energy. Drying Technol. 2018, 1–10. DOI:10.1080/07373937.2018.1439503.
  • Huang, Z.; Marra, F.; Wang, S. A Novel Strategy for Improving Radio Frequency Heating Uniformity of Dry Food Products Using Computational Modeling. Innovative Food Sci. Emerging Technol. 2016, 34, 100–111.
  • Roknul Azam, S. M.; Zhang, M.; Law, C. L.; Mujumdar, A. S. Effects of Drying Methods on Quality Attributes of Peach (Prunus persica) Leather. Drying Technol. 2018, 1–11. DOI:10.1080/07373937.2018.1454942.
  • Zhang, S.; Huang, Z.; Wang, S. Improvement of Radio Frequency (rf) Heating Uniformity for Peanuts with a New Strategy Using Computational Modeling. Innovative Food Sci. Emerging Technol. 2017, 41, 79–89.
  • Zhang, Z.; Wang, J.; Zhang, X.; Shi, Q.; Xin, L.; Fu, H.; Wang, Y. Effects of Radio Frequency Assisted Blanching on Polyphenol Oxidase, Weight Loss, Texture, Color and Microstructure of Potato. Food Chemist. 2018, 248, 173–182.
  • Ozturk, S.; Kong, F.; Singh, R. K.; Kuzy, J. D.; Li, C.; Trabelsi, S. Dielectric Properties, Heating Rate, and Heating Uniformity of Various Seasoning Spices and Their Mixtures with Radio Frequency Heating. J. Food Eng. 2018, 228, 128–141.
  • Wang, Y.; Zhang, L.; Johnson, J.; Gao, M.; Tang, J.; Powers, J. R.; Wang, S. Developing Hot Air-Assisted Radio Frequency Drying for in-Shell Macadamia Nuts. Food Bioprocess. Technol. 2014, 7, 278–288.
  • Zhou, X.; Gao, H.; Mitcham, E. J.; Wang, S. Comparative Analyses of Three Dehydration Methods on Drying Characteristics and Oil Quality of in-Shell Walnuts. Drying Technol. 2018, 36, 477–490.
  • Li, R.; Kou, X.; Cheng, T.; Zheng, A.; Wang, S. Verification of Radio Frequency Pasteurization Process for in-Shell Almonds. J. Food Eng. 2017, 192, 103–110.
  • Wang, S.; Tang, J.; Sun, T.; Mitcham, E. J.; Koral, T.; Birla, S. L. Considerations in Design of Commercial Radio Frequency Treatments for Postharvest Pest Control in in-Shell Walnuts. J. Food Eng. 2006, 77, 304–312.
  • Zhou, L.; Wang, S. Industrial-Scale Radio Frequency Treatments to Control Sitophilus Oryzae in Rough, Brown, and Milled Rice. J. Stored Products Res. 2016, 68, 9–18.
  • Jiao, S.; Johnson, J. A.; Tang, J.; Wang, S. Industrial-Scale Radio Frequency Treatments for Insect Control in Lentils. J. Stored Products Res. 2012, 48, 143–148.
  • Wang, L. P.; Zhang, M.; Huang, S. B.; Lu, L. Q.; Roknul Azam, S. M. Comparison of Three Different Frequency Drying Methods for Barley Chewable Tablets. Drying Technol. 2014, 32, 190–196.
  • Wang, H.; Zhang, M.; Mujumdar, A. S. Comparison of Three New Drying Methods for Drying Characteristics and Quality of Shiitake Mushroom (Lentinus edodes). Drying Technol. 2014, 32, 1791–1802.
  • Jin, W.; Zhang, M.; Shi, W. Evaluation of Ultrasound Pretreatment and Drying Methods on Selected Quality Attributes of Bitter Melon (Momordica charantia l.). Drying Technol. 2018, 1–10. DOI:10.1080/07373937.2018.1458735.
  • Liao, M.; Zhao, Y.; Gong, C.; Zhang, H.; Jiao, S. Effects of Hot Air-Assisted Radio Frequency Roasting on Quality and Antioxidant Activity of Cashew Nut Kernels. LWT Food Sci. Technol. 2018, 93, 274–280.
  • Lyu, X.; Peng, X.; Wang, S.; Yang, B.; Wang, X.; Yang, H.; Xiao, Y.; Baloch, A. B.; Xia, X. Quality and Consumer Acceptance of Radio Frequency and Traditional Heat Pasteurised Kiwi Puree during Storage. Int. J. Food Sci. Technol. 2018, 53, 209–218.
  • Alfaifi, B.; Tang, J.; Rasco, B.; Wang, S.; Sablani, S. Computer Simulation Analyses to Improve Radio Frequency (rf) Heating Uniformity in Dried Fruits for Insect Control. Innovative Food Sci. Emerging Technol. 2016, 37, 125–137.
  • Liu, Q.; Zhang, M.; Xu, B.; Fang, Z.; Zheng, D. Effect of Radio Frequency Heating on the Sterilization and Product Quality of Vacuum Packaged Caixin. Food Bioproducts Process. 2015, 95, 47–54.
  • Orsat, V.; Raghavan, G. S. V. Chapter 21 - Radio-Frequency Processing. In Emerging Technologies for Food Processing, 2nd ed.; Sun, D.-W., Ed.; Academic Press: San Diego, 2014; pp 385–398.
  • Rowley, A. T. 9 - Radio Frequency Heating. In Thermal Technologies in Food Processing; Richardson, P., Ed.; Woodhead Publishing; Duxford, 2001; pp 163–177.
  • Nozad, M.; Khojastehpour, M.; Tabasizadeh, M.; Azizi, M.; Miraei Ashtiani, S.-H.; Salarikia, A. Characterization of Hot-Air Drying and Infrared Drying of Spearmint (Mentha spicata l.) Leaves. Food Measure. 2016, 10, 466–473.
  • Pawar, S. B. P.; Pratape, V. M. Fundamentals of Infrared Heating and Its Application in Drying of Food Materials: A Review. J. Food Process Eng. 2017, 40, e12308.
  • Brandao, R. J.; Borel, L. D. M. S.; Marques, L. G.; Prado, M. M. Heat and Mass Transfer, Energy and Product Quality Aspects in Drying Processes Using Infrared Radiation. Springer International Publishing: New York, 2015; pp. 111–130.
  • Salarikia, A.; Miraei Ashtiani, S.-H.; Golzarian, M. R. Comparison of Drying Characteristics and Quality of Peppermint Leaves Using Different Drying Methods. J. Food Process. Preserv. 2017, 41, 1–13.
  • Barzegar, M.; Zare, D.; Stroshine, R. L. An Integrated Energy and Quality Approach to Optimization of Green Peas Drying in a Hot Air Infrared-Assisted Vibratory Bed Dryer. J. Food Eng. 2015, 166, 302–315.
  • Onwude, D. I.; Hashim, N.; Abdan, K.; Janius, R.; Chen, G. Investigating the Influence of Novel Drying Methods on Sweet Potato (Ipomoea batatas l.): Kinetics, Energy Consumption, Color, and Microstructure. J. Food Process Eng. 2018. DOI:10.1111/jfpe.12686.
  • Onwude Daniel, I.; Hashim, N.; Janius, R.; Nawi, N. B.; Abdan, K. Modelling Effective Moisture Diffusivity of Pumpkin (Cucurbita moschata) Slices under Convective Hot Air Drying Condition. Int. J. Food Eng. 2016, 12, 481–489.
  • Tan, M.; Chua, K. J.; Mujumdar, A. S.; Chou, S. K. Effect of Osmotic Pretreatment and Infrared Radiation on Drying Rate and Color Changes during Drying of Potato and Pineapple. Drying Technol. 2001, 19, 2193–2207.
  • El-Mesery, H. S.; Mwithiga, G. Performance of a Convective, Infrared and Combined Infrared- Convective Heated Conveyor-Belt Dryer. J. Food Sci. Technol. 2015, 52, 2721–2730.
  • Zare, D.; Naderi, H.; Ranjbaran, M. Energy and Quality Attributes of Combined Hot-Air/Infrared Drying of Paddy. Drying Technol. 2015, 33, 570–582.
  • Nalawade, S. A.; Sinha, A.; &Hebbar, H. U. Infrared Based Dry Blanching and Hybrid Drying of Bitter Gourd Slices: Process Efficiency Evaluation. J Food Process Eng. 2018, 41, 1–11.
  • Supmoon, N.; Noomhorm, A. Influence of Combined Hot Air Impingement and Infrared Drying on Drying Kinetics and Physical Properties of Potato Chips. Drying Technol. 2013, 31, 24–31.
  • Brandao, R. J.; Santos, L. D. M.; Marques, L. G.; Prado, M. M. Heat and Mass Transfer and Energy Aspects in Combined Infrared-Convective Drying of Bee-Pollen. Defect Diffus. Forum. 2015, 364, 9–17.
  • Onwude, D. I.; Hashim, N.; Abdan, K.; Janius, R.; Chen, G. The Effectiveness of Combined Infrared and Hot-Air Drying Strategies for Sweet Potato. J. Food Eng. 2019, 241, 75–87.
  • Chua, K. J.; Chou, S. K. A Comparative Study between Intermittent Microwave and Infrared Drying of Bioproducts. Int. J. Food Sci. Tech. 2005, 40, 23–39.
  • Aktaş, M.; Şevik, S.; Aktekeli, B. Development of Heat Pump and Infrared-Convective Dryer and Performance Analysis for Stale Bread Drying. Energy Convers. Manage. 2016, 113, 82–94.
  • Chen, Q.; Bi, J.; Wu, X.; Yi, J.; Zhou, L.; Zhou, Y. Drying Kinetics and Quality Attributes of Jujube (Zizyphus jujuba miller) Slices Dried by Hot-Air and Short- and Medium-Wave Infrared Radiation. LWT Food Sci. Technol. 2015, 64, 759–766.
  • Siriamornpun, S.; Ratseewo, J.; Kaewseejan, N.; Meeso, N. Effect of Osmotic Treatments and Drying Methods on Bioactive Compounds in Papaya and Tomato. RSC Adv. 2015, 5, 18579–18587.
  • Pham, H. N. T.; Vuong, Q. V.; Bowyer, M. C.; &Scarlett, C. J. Effect of Extraction Solvents and Thermal Drying Methods on Bioactive Compounds and Antioxidant Properties of Catharanthus Roseus (l.) g. Don (Patricia white cultivar.). J. Food Process. Preserv. 2017, 41, 1–8.
  • Niamnuy, C.; Nachaisin, M.; Laohavanich, J.; Devahastin, S. Evaluation of Bioactive Compounds and Bioactivities of Soybean Dried by Different Methods and Conditions. Food Chem. 2011, 129, 899–906.
  • Adak, N.; Heybeli, N.; Ertekin, C. Infrared Drying of Strawberry. Food Chem. 2017, 219, 109–116.
  • Mihindukulasuriya, S. D. F.; Jayasuriya, H. P. W. Drying of Chilli in a Combined Infrared and Hot Air Rotary Dryer. J. Food Sci. Technol. 2015, 52, 4895–4904.
  • Shewale, S. R.; Hebbar, H. U. Effect of Infrared Pretreatment on Low-Humidity Air Drying of Apple Slices. Drying Technol. 2017, 35, 490–499.
  • Garcia-Perez, J. V.; Carcel, J. A.; Riera, E.; Rosselló, C.; Mulet, A. Intensification of Low-Temperature Drying by Using Ultrasound. Drying Technol. 2012, 30, 1199–1208.
  • Musielak, G.; Mierzwa, D.; Kroehnke, J. Food Drying Enhancement by Ultrasound – A Review. Trends Food Sci. Technol. 2016, 56, 126–141.
  • Rodríguez, Ó.; Santacatalina, J. V.; Simal, S.; Garcia-Perez, J. V.; Femenia, A.; Rosselló, C. Influence of Power Ultrasound Application on Drying Kinetics of Apple and Its Antioxidant and Microstructural Properties. J. Food Eng. 2014, 129, 21–29.
  • Rajewska, K.; Mierzwa, D. Influence of Ultrasound on the Microstructure of Plant Tissue. Innovative Food Sci. Emerg. Technol. 2017, 43, 117–129.
  • Ren, F.; Perussello, C. A.; Zhang, Z.; Kerry, J. P.; Tiwari, B. K. Impact of Ultrasound and Blanching on Functional Properties of Hot-Air Dried and Freeze Dried Onions. LWT Food Sci. Technol. 2018, 87, 102–111.
  • Sabarez, H. T. Airborne ultrasound for convective drying intensification, In Innovative Food Processing Technologies; Knoerzer, P.J. and G.W. Smithers, Eds., Duxford, 2016; pp 361–386.
  • Tao, Y.; Zhang, J.; Jiang, S.; Xu, Y.; Show, P.-L.; Han, Y.; Ye, X.; Ye, M. Contacting Ultrasound Enhanced Hot-Air Convective Drying of Garlic Slices: Mass Transfer Modeling and Quality Evaluation. J. Food Eng. 2018, 235, 79–88.
  • Méndez-Calderón, E. K.; Ocampo-Castaño, J. C.; Orrego, C. E. Optimization of Convective Drying Assisted by Ultrasound for Mango Tommy (Mangifera indica l). J. Food Process Eng. 2018, 41, 1–9.
  • Vallespir, F.; Carcel, J. A.; Marra, F.; Eim, V. S.; Simal, S. Improvement of Mass Transfer by Freezing Pre-Treatment and Ultrasound Application on the Convective Drying of Beetroot (Beta vulgaris l.). Food Bioprocess Technol. 2018, 11, 72–83.
  • Sledz, M.; Wiktor, A.; Nowacka, M.; &Witrowa-Rajchert, D. Drying Kinetics, Microstructure and Antioxidant Properties of Basil Treated by Ultrasound. J. Food Process. Eng. 2017, 40, 1–13.
  • Tufekci, S. O.; Özkal S. G. Enhancement of Drying and Rehydration Characteristics of Okra by Ultrasound Pre-Treatment Application. Heat Mass Transf. 2017, 53, 2279–2286.
  • Magalhães, M. L.; Cartaxo, S. J. M.; Gallão, M. I.; García-Pérez, J. V.; Cárcel, J. A.; Rodrigues, S.; Fernandes, F. A. N. Drying Intensification Combining Ultrasound Pre-Treatment and Ultrasound-Assisted Air Drying. J. Food Eng. 2017, 215, 72–77.
  • Jafari, A.; Zare, D. Ultrasound-Assisted Fluidized Bed Drying of Paddy: Energy Consumption and Rice Quality Aspects. Drying Technol. 2017, 35, 893–902.
  • Liu, Y.; Sun, Y.; Yu, H.; Yin, Y.; Li, X.; Duan, X. Hot Air Drying of Purple-Fleshed Sweet Potato with Contact Ultrasound Assistance. Drying Technol. 2017, 35, 564–576.
  • Liu, Y.; Sun, C.; Lei, Y.; Yu, H.; Xi, H.; Duan, X. Contact Ultrasound Strengthened Far-Infrared Radiation Drying on Pear Slices: Effects on Drying Characteristics, Microstructure, and Quality Attributes. Drying Technol. 2018, 1–14. DOI:10.1080/07373937.2018.1458317.
  • Abdoli, B.; Zare, D.; Jafari, A.; Chen, G. Evaluation of the Air-Borne Ultrasound on Fluidized Bed Drying of Shelled Corn: Effectiveness, Grain Quality, and Energy Consumption. Drying Technol. 2018, 36, 1749–1766.
  • Kowalski, S. J.; Rybicki, A. Ultrasound in Wet Biological Materials Subjected to Drying. J. Food Eng. 2017, 212, 271–282.
  • Bermúdez, J. M.; Beneroso, D.; Rey-Raap, N.; Arenillas, A.; Menéndez, J. A. Energy Consumption Estimation in the Scaling-up of Microwave Heating Processes. Chemical Eng. Process. Process Intensif. 2015, 95, 1–8.
  • Szadzińska, J.; Łechtańska, J.; Pashminehazar, R.; Kharaghani, A.; Tsotsas, E. Microwave- and Ultrasound-Assisted Convective Drying of Raspberries: Drying Kinetics and Microstructural Changes. Drying Technol. 2018, 1–12. DOI:10.1080/07373937.2018.1433199.
  • Rodríguez, Ó.; Eim, V.; Rosselló, C.; Femenia, A.; Cárcel, J.A.; Simal, S. Application of Power Ultrasound on the Convective Drying of Fruits and Vegetables: Effects on Quality. J. Sci. Food Agric. 2018, 98, 1660–1673.
  • Wang, L.; Xu, B.; Wei, B.; Zeng, R. Low Frequency Ultrasound Pretreatment of Carrot Slices: Effect on the Moisture Migration and Quality Attributes by Intermediate-Wave Infrared Radiation Drying. Ultrason. Sonochemist. 2018, 40, 619–628.
  • Méndez, E. K.; Manrique, D. L.; Ocampo, J. C.; Salazar, N. A.; Vallejo, D.; Orrego, C. E. Effect of Convective Drying Assisted by Ultrasound on Drying Time and Aroma of Tamarillo and Mango Fruits. Presented at 22nd International Congress on Acoustics Acoustics for the 21st Century. Buenos Aires, Argentina, Sep 5–9, 2016, p. 045009.
  • Forero, D. P.; Orrego, C. E.; Peterson, D. G.; Osorio, C. Chemical and Sensory Comparison of Fresh and Dried Lulo (Solanum quitoense lam.) Fruit Aroma. Food Chem. 2015, 169, 85–91.
  • Fernandes, F. A. N.; Rodrigues, S.; Garcia, J. V. P.; Carcel, J. A. Effects of Ultrasound-Assisted Air-Drying on Vitamins and Carotenoids of Cherry Tomatoes. Drying Technol. 2016, 34, 986–996.
  • Fernandes, F. A. N.; Rodrigues, S.; Cárcel, J. A.; García-Pérez, J. V. Ultrasound-Assisted Air-Drying of Apple (Malus domestica l.) and Its Effects on the Vitamin of the Dried Product. Food Bioprocess. Technol. 2015, 8, 1503–1511.
  • Cruz, L.; Clemente, G.; Mulet, A.; Ahmad-Qasem, M. H.; Barrajon, C. E.; Garcia-Perez, J. V. Air-Borne Ultrasonic Application in the Drying of Grape Skin: Kinetic and Quality Considerations. J. Food Eng. 2016, 168, 251–258.
  • Puente-Díaz, L.; Ah-Hen, K.; Vega-Gálvez, A.; Lemus-Mondaca, R.; Scala, K. D. Combined Infrared-Convective Drying of Murta (Ugni molinae turcz) Berries: Kinetic Modeling and Quality Assessment. Drying Technol. 2013, 31, 329–338.
  • Jahedi Rad, S.; Kaveh, M.; Sharabiani, V. R.; Taghinezhad, E. Fuzzy Logic, Artificial Neural Network and Mathematical Model for Prediction of White Mulberry Drying Kinetics. Heat Mass Transf. 2018, 54, 3361–3374.
  • Sarimeseli, A.; Coskun, M. A.; Yuceer, M. Modeling Microwave Drying Kinetics of Thyme (Thymus vulgaris l.) Leaves Using Ann Methodology and Dried Product Quality. J Food Process Preserv. 2014, 38, 558–564.
  • Kroehnke, J.; Szadzińska, J.; Stasiak, M.; Radziejewska-Kubzdela, E.; Biegańska-Marecik, R.; Musielak, G. Ultrasound- and Microwave-Assisted Convective Drying of Carrots – Process Kinetics and Product’s Quality Analysis. Ultrason. Sonochemist. 2018, 48, 249–258.
  • Sun, Y.; Liu, Y.; Yu, H.; Xie, A.; Li, X.; Yin, Y.; Duan, X. Non-Destructive Prediction of Moisture Content and Freezable Water Content of Purple-Fleshed Sweet Potato Slices during Drying Process Using Hyperspectral Imaging Technique. Food Anal. Methods. 2017, 10, 1535–1546.
  • Huang, Z.; Zhang, B.; Marra, F.; Wang, S. Computational Modelling of the Impact of Polystyrene Containers on Radio Frequency Heating Uniformity Improvement for Dried Soybeans. Innovative Food Sci. Emerg. Technol. 2016, 33, 365–380.
  • Zhu, H.; Li, D.; Ma, J.; Du, Z.; Li, P.; Li, S.; Wang, S. Radio Frequency Heating Uniformity Evaluation for Mid-High Moisture Food Treated with Cylindrical Electromagnetic Wave Conductors. Innovative Food Sci. Emerging Technol. 2018, 47, 56–70.
  • Kaveh, M.; Abbaspour-Gilandeh, Y.; Chayjan, R. A.; Taghinezhad, E.; Mohammadigol, R. Mass Transfer, Physical, and Mechanical Characteristics of Terebinth Fruit (Pistacia atlantica l.) under Convective Infrared Microwave Drying. Heat Mass Transf. 2018, 54, 1879–1899.
  • Chayjan, R. A.; Alaei, B. New Model for Colour Kinetics of Plum under Infrared Vacuum Condition and Microwave Drying. Acta Sci. Pol. Technol. Aliment. 2016, 15, 131–144.
  • Sant'Anna, V.; Gurak, P. D.; Marczak, L. D. F.; Tessaro, I. C. Tracking Bioactive Compounds with Colour Changes in Foods – A Review. Dyes Pigm. 2013, 98, 601–608.
  • Castro, A. M.; Mayorga, E. Y.; Moreno, F. L. Mathematical Modelling of Convective Drying of Fruits: A Review. J. Food Eng. 2018, 223, 152–167.
  • Demarchi, S. M.; Torrez Irigoyen, R. M.; Giner, S. A. Vacuum Drying of Rosehip Leathers: Modelling of Coupled Moisture Content and Temperature Curves as a Function of Time with Simultaneous Time-Varying Ascorbic Acid Retention. J. Food Eng. 2018, 233, 9–16.
  • Nguyen-Do-Trong, N.; Dusabumuremyi, J. C.; &Saeys, W. Cross-Polarized Vnir Hyperspectral Reflectance Imaging for Non-Destructive Quality Evaluation of Dried Banana Slices, Drying Process Monitoring and Control. J. Food Eng. 2018, 238, 85–94.
  • Defraeye, T.; Radu, A. Insights in Convective Drying of Fruit by Coupled Modeling of Fruit Drying, Deformation, Quality Evolution and Convective Exchange with the Airflow. Appl. Therm. Eng. 2018, 129, 1026–1038.
  • Apinyavisit, K.; Nathakaranakule, A.; Soponronnarit, S.; Mittal, G. S. A Comparative Study of Combined Microwave Techniques for Longan (Dimocarpus longan lour.) Drying with Hot Air or Vacuum. Int. J. Food Eng. 2017, 13, 1–11.
  • Roknul, A. S. M.; Zhang, M.; Mujumdar, A. S.; Wang, Y. A Comparative Study of Four Drying Methods on Drying Time and Quality Characteristics of Stem Lettuce Slices (Lactuca sativa. l.). Drying Technol. 2014, 32, 657–666.
  • Rahmanian-Koushkaki, H.; Nourmohamadi-Moghadami, A.; Zare, D.; Karimi, G. Experimental and Theoretical Investigation of Hot Air- Infrared Thin Layer Drying of Corn in a Fixed and Vibratory Bed Dryer. Eng. Agric. Environ. Food. 2017, 10, 191–197.
  • Tao, Y.; Wang, P.; Wang, Y.; Kadam, S. U.; Han, Y.; Wang, J.; Zhou, J. Power Ultrasound as a Pretreatment to Convective Drying of Mulberry (Morus alba l.) Leaves: Impact on Drying Kinetics and Selected Quality Properties. Ultrason. Sonochemist. 2016, 31, 310–318.
  • Nowacka, M.; Wedzik, M. Effect of Ultrasound Treatment on Microstructure, Colour and Carotenoid Content in Fresh and Dried Carrot Tissue. Appl. Acoust. 2016, 103, 163–171.
  • Jiao, Y.; Tang, J.; Wang, Y.; Koral, T. L. Radio-Frequency Applications for Food Processing and Safety. Annu. Rev. Food Sci. Technol. 2018, 9, 105–127.
  • Shinde, A.; Das, S.; Datta, A. K. Quality Improvement of Orthodox and Ctc Tea and Performance Enhancement by Hybrid Hot Air–Radio Frequency (rf) Dryer. J. Food Eng. 2013, 116, 444–449.
  • Workneh, T. S.; Oke, M. O. Thin Layer Modelling of Microwave-Convective Drying of Tomato Slices. Int. J. Food Eng. 2013, 9, 75–90.
  • Onwude, D. I.; Hashim, N.; Abdan, K.; Janius, R.; Chen, G.; Kumar, C. Modelling of Coupled Heat and Mass Transfer for Combined Infrared and Hot-Air Drying of Sweet Potato. J. Food Eng. 2018, 228, 12–24.
  • Bai, J.-W.; Xiao, H.-W.; Ma, H.-L.; Zhou, C.-S. Artificial Neural Network Modeling of Drying Kinetics and Color Changes of Ginkgo Biloba Seeds during Microwave Drying Process. J. Food Quality 2018. Doi:10.1155/2018/3278595.
  • Ozdemir, M. B.; Akta, M.; Sevik, S.; Khanlari, A. Modeling of a Convective-Infrared Kiwifruit Drying Process. Int. J. Hydrogen Energy 2017, 42, 18005–18013.
  • Joardder, M. U. H.; Kumar, C.; Karim, M. A. Multiphase Transfer Model for Intermittent Microwave-Convective Drying of Food: Considering Shrinkage and Pore Evolution. Int. J. Multiphase Flow. 2017, 95, 101–119.
  • Bhattacharya, M.; Srivastav, P. P.; Mishra, H. N. Thin-Layer Modeling of Convective and Microwave-Convective Drying of Oyster Mushroom (Pleurotus ostreatus). J. Food Sci. Technol. 2015, 52, 2013–2022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.