Publication Cover
Drying Technology
An International Journal
Volume 37, 2019 - Issue 16
322
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Ultrasonically enhanced low-temperature microwave-assisted vacuum frying of edamame: Effects on dehydration kinetics and improved quality attributes

, &
Pages 2087-2104 | Received 08 Aug 2018, Accepted 05 Dec 2018, Published online: 18 Jan 2019

References

  • Cheng, X-f.; Zhang, M.; Adhikari, B. Effects of Ultrasound-Assisted Thawing on the Quality of Edamames [Glycine max (L.) Merrill] Frozen Using Different Freezing Methods. Food Sci. Biotechnol. 2014, 23, 1095–1102. DOI:10.1007/s10068-014-0150-0.
  • Qing-Guo, H.; Min, Z.; Mujumdar, A. S.; Wei-Hua, D.; Jin-Cai, S. Effects of Different Drying Methods on the Quality Changes of Granular Edamame. Drying Technol. 2006, 24, 1025–1032. DOI:10.1080/07373930600776217.
  • Huang, M.; Wang, Q.; Zhang, M.; Zhu, Q. Prediction of Color and Moisture Content for Vegetable Soybean during Drying Using Hyperspectral Imaging Technology. J. Food Eng. 2014, 128, 24–30. DOI:10.1016/j.jfoodeng.2013.12.008.
  • Hu, Q-g.; Zhang, M.; Mujumdar, A. S.; Xiao, G-n.; Sun, J-c. Performance Evaluation of Vacuum Microwave Drying of Edamame in Deep-Bed Drying. Drying Technol. 2007, 25, 731–736. DOI:10.1080/07373930701291199.
  • Andrés-Bello, A.; García-Segovia, P.; Martínez-Monzó, J. Vacuum Frying: An Alternative to Obtain High-Quality Dried Products. Food Eng. Rev. 2011, 3, 63–78. DOI:10.1007/s12393-011-9037-5.
  • Garayo, J.; Moreira, R. Vacuum Frying of Potato Chips. Food Eng. 2002, 55, 181–191. DOI:10.1016/S0260-8774(02)00062-6.
  • Diamante, L. M.; Hellmann, A. Vacuum Frying Foods: Products, Process and Optimization. Int. Food Res. J. 2014, 22, 15–22.
  • Su, Y.; Zhang, M.; Zhang, W.; Adhikari, B.; Yang, Z. Application of Novel Microwave-Assisted Vacuum Frying to Reduce the Oil Uptake and Improve the Quality of Potato Chips. LWT Food Sci. Technol. 2016, 73, 490–497. DOI:10.1016/j.lwt.2016.06.047.
  • Su, Y.; Zhang, M.; Zhang, W. Effect of Low Temperature on the Microwave-assisted Vacuum Frying of Potato Chips. Drying Technol. 2016, 34, 227–234. DOI:10.1080/07373937.2015.1040027.
  • Gharachorloo, M.; Ghavami, M.; Mahdiani, M.; Azizinezhad, R. The Effects of Microwave Frying on Physicochemical Properties of Frying and Sunflower Oils. J. Am. Oil Chem. Soc. 2010, 87, 355–360. DOI:10.1007/s11746-009-1508-y.
  • Oztop, M. H.; Sahin, S.; Sumnu, G. Optimization of Microwave Frying of Potato Slices by Using Taguchi Technique. J. Food Eng. 2007, 79, 83–91. DOI:10.1016/j.jfoodeng.2006.01.031.
  • Sensoy, I.; Sahin, S.; Sumnu, G. Microwave Frying Compared with Conventional Frying via Numerical Simulation. Food Bioprocess Technol. 2013, 6, 1414–1419. DOI:10.1007/s11947-012-0805-x.
  • Bai-Ngew, S.; Therdthai, N.; Dhamvithee, P. Characterization of Microwave Vacuum-dried Durian Chips. J. Food Eng. 2011, 104, 114–122. DOI:10.1016/j.jfoodeng.2010.12.003.
  • Mason, C. F.; Green, R. E. Errata. Bird Study 1996, 43, 253–254. DOI:10.1080/00063659609461017.
  • Kowalski, S. J.; Mierzwa, D. US-Assisted Convective Drying of Biological Materials. Drying Technol. 2015, 33, 1601–1613. DOI:10.1080/07373937.2015.1026985.
  • Fernandes, F. A. N.; Gallão, M. I.; Rodrigues, S. Effect of Osmotic Dehydration and Ultrasound Pre-treatment on Cell Structure: Melon Dehydration. LWT Food Sci. Technol. 2008, 41, 604–610. DOI:10.1016/j.lwt.2007.05.007.
  • Stojanovic, J.; Silva, J. L. Influence of Osmotic Concentration, Continuous High Frequency Ultrasound and Dehydration on Antioxidants, Colour and Chemical Properties of Rabbiteye Blueberries. Food Chem. 2007, 101, 898–906. DOI:10.1016/j.foodchem.2006.02.044.
  • Cárcel, J. A.; García-Pérez, J. V.; Riera, E.; Mulet, A. Influence of High-Intensity Ultrasound on Drying Kinetics of Persimmon. Drying Technol. 2007, 25, 185–193. DOI:10.1080/07373930601161070.
  • Santacatalina, J. V.; Contreras, M.; Simal, S.; Cárcel, J. A.; Garcia-Perez, J. V. Impact of Applied Ultrasonic Power on the Low Temperature Drying of Apple. Ultrason. Sonochem. 2016, 28, 100–109. DOI:10.1016/j.ultsonch.2015.06.027.
  • Chen, Z.-G.; Guo, X.-Y.; Wu, T. A Novel Dehydration Technique for Carrot Slices Implementing Ultrasound and Vacuum Drying Methods. Ultrason. Sonochem. 2016, 30, 28–34. DOI:10.1016/j.ultsonch.2015.11.026.
  • Szadzinska, J.; Lechtanska, J.; Kowalski, S. J.; Stasiak, M. The Effect of High Power Airborne Ultrasound and Microwaves on Convective Drying Effectiveness and Quality of Green Pepper. Ultrason. Sonochem. 2017, 34, 531–539. DOI:10.1016/j.ultsonch.2016.06.030.
  • Kowalski, S. J.; Mierzwa, D.; Stasiak, M. Ultrasound-Assisted Convective Drying of Apples at Different Process Conditions. Drying Technol. 2017, 35, 939–947. DOI:10.1080/07373937.2016.1239631.
  • Su, Y.; Zhang, M.; Zhang, W.; Liu, C.; Adhikari, B. Ultrasonic Microwave-assisted Vacuum Frying Technique as a Novel Frying Method for Potato Chips at Low Frying Temperature. Food Bioprod. Process. 2018, 108, 95–104. DOI:10.1016/j.fbp.2018.02.001.
  • Faruq, A. A.; Zhang, M.; Fan, D. Modeling the Dehydration and Analysis of Dielectric Properties of Ultrasound and Microwave Combined Vacuum Frying Apple Slices. Drying Technol. 2018, 36, 1–15. DOI:10.1080/07373937.2018.1465433.
  • Santacatalina, J. V.; Rodríguez, O.; Simal, S.; Cárcel, J. A.; Mulet, A.; García-Pérez, J. V. Ultrasonically Enhanced Low-temperature Drying of Apple: Influence on Drying Kinetics and Antioxidant Potential. J. Food Eng. 2014, 138, 35–44. DOI:10.1016/j.jfoodeng.2014.04.003.
  • Chou, S. K.; Chua, K. J. New Hybrid Drying Technologies for Heat Sensitive Foodstuffs. Trends Food Sci. Technol. 2001, 12, 359–369. DOI:10.1016/S0924-2244(01)00102-9.
  • Carrión, C.; Mulet, A.; García-Pérez, J. V.; Cárcel, J. A. Ultrasonically Assisted Atmospheric Freeze-Drying of Button Mushroom. Drying Kinetics and Product Quality. Drying Technol. 2018, 36, 1814–1823. DOI:10.1080/07373937.2017.1417870.
  • Szadzińska, J.; Łechtańska, J.; Pashminehazar, R.; Kharaghani, A.; Tsotsas, E. Microwave- and Ultrasound-Assisted Convective Drying of Raspberries: Drying Kinetics and Microstructural Changes. Drying Technol. 2018, 1, 1–12. DOI:10.1080/07373937.2018.1433199.
  • Huang, Z.; Marra, F.; Subbiah, J.; Wang, S. Computer Simulation for Improving Radio Frequency (RF) Heating Uniformity of Food Products: A Review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1033–1057. DOI:10.1080/10408398.2016.1253000.
  • Bravo, J.; Sanjuán, N.; Ruales, J.; Mulet, A. Modeling the Dehydration of Apple Slices by Deep Fat Frying. Drying Technol. 2009, 27, 782–786. DOI:10.1080/07373930902828187.
  • Pedreschi, F.; Hernandez, P.; Figueroa, C.; Moyano, P. Modeling Water Loss during Frying of Potato Slices. Int. J. Food Prop. 2005, 8, 289–299. DOI:10.1081/JFP-200059480.
  • Yıldız, A.; Koray Palazoğlu, T.; Erdoğdu, F. Determination of Heat and Mass Transfer Parameters during Frying of Potato Slices. J. Food Eng. 2007, 79, 11–17. DOI:10.1016/j.jfoodeng.2006.01.021.
  • Su, Y.; Zhang, M.; Fang, Z.; Zhang, W. Analysis of Dehydration Kinetics, Status of Water and Oil Distribution of Microwave-Assisted Vacuum Frying Potato Chips Combined with NMR and Confocal Laser Scanning Microscopy. Food Res. Int. 2017, 101, 188–197. DOI:10.1016/j.foodres.2017.08.067.
  • AOAC. Official Methods of Analysis of AOAC International; AOAC Intl. pv (loose-leaf): Arlington, Va, 1995.
  • Başlar, M.; Kılıçlı, M.; Yalınkılıç, B. Dehydration Kinetics of Salmon and Trout Fillets Using Ultrasonic Vacuum Drying as a Novel Technique. Ultrason. Sonochem. 2015, 27, 495–502. DOI:10.1016/j.ultsonch.2015.06.018.
  • Aghbashlo, M.; Kianmehr, M. H.; Samimi-Akhijahani, H. Influence of Drying Conditions on the Effective Moisture Diffusivity, energy of Activation and Energy Consumption during the Thin-Layer Drying of Berberis Fruit (Berberidaceae). Energy Convers. Manage. 2008, 49, 2865–2871. DOI:10.1016/j.enconman.2008.03.009.
  • Gao, X.; Wang, J.; Wang, S.; Li, Z. Modeling of Drying Kinetics of Green Peas by Reaction Engineering Approach. Drying Technol. 2016, 34, 437–442. DOI:10.1080/07373937.2015.1060491.
  • Doymaz, İ. Effect of Pre-treatments Using Potassium Metabisulphide and Alkaline Ethyl Oleate on the Drying Kinetics of Apricots. Biosyst. Eng. 2004, 89, 281–287. DOI:10.1016/j.biosystemseng.2004.07.009.
  • Hu, Q-g.; Zhang, M.; Mujumdar, A. S.; Xiao, G-n.; Jin-Cai, S. Drying of Edamames by Hot Air and Vacuum Microwave Combination. J. Food Eng. 2006, 77, 977–982. DOI:10.1016/j.jfoodeng.2005.08.025.
  • Qiu, L.; Zhang, M.; Wang, Y.; Bhandari, B. Effects of Ultrasound Pretreatments on the Quality of Fried Sweet Potato (Ipomea batatas) Chips during Microwave-Assisted Vacuum Frying. J. Food Process Eng. 2018, 41, e12879. DOI:10.1111/jfpe.12879.
  • García-Pérez, J. V.; Cárcel, J. A.; Riera, E.; Mulet, A. Influence of the Applied Acoustic Energy on the Drying of Carrots and Lemon Peel. Drying Technol. 2009, 27, 281–287. DOI:10.1080/07373930802606428.
  • Ortuño, C.; Pérez-Munuera, I.; Puig, A.; Riera, E.; Garcia-Perez, J. V. Influence of Power Ultrasound Application on Mass Transport and Microstructure of Orange Peel during Hot Air Drying. Physics Procedia. 2010, 3, 153–159. DOI:10.1016/j.phpro.2010.01.022.
  • Rodríguez, J.; Mulet, A.; Bon, J. Influence of High-intensity Ultrasound on Drying Kinetics in Fixed Beds of High Porosity. J. Food Eng. 2014, 127, 93–102. DOI:10.1016/j.jfoodeng.2013.12.002.
  • Cárcel, J. A.; García-Pérez, J. V.; Benedito, J.; Mulet, A. Food Process Innovation through New Technologies: Use of Ultrasound. J. Food Eng. 2012, 110, 200–207. DOI:10.1016/j.jfoodeng.2011.05.038.
  • Muralidhara, H. S.; Ensminger, D.; Putnam, A. Acoustic Dewatering and Drying (Low and High Frequency): State of the Art Review. Drying Technol. 1985, 3, 529–566. DOI:10.1080/07373938508916296.
  • Kadam, S. U.; Tiwari, B. K.; O’Donnell, C. P. Effect of Ultrasound Pre-treatment on the Drying Kinetics of Brown Seaweed Ascophyllum nodosum. Ultrason. Sonochem. 2015, 23, 302–307. DOI:10.1016/j.ultsonch.2014.10.001.
  • Zogzas, N. P.; Maroulis, Z. B. Effective Moisture Diffusivity Estimation from Drying Data. A Comparison between Various Methods of Analysis. Drying Technol. 1996, 14, 1543–1573. DOI:10.1080/07373939608917163.
  • Su, Y.; Zhang, M.; Bhandari, B.; Zhang, W. Enhancement of Water Removing and the Quality of Fried Purple-Fleshed Sweet Potato in the Vacuum Frying by Combined Power Ultrasound and Microwave Technology. Ultrason. Sonochem. 2018, 44, 368–379. DOI:10.1016/j.ultsonch.2018.02.049.
  • Gamboa-Santos, J.; Montilla, A.; Cárcel, J. A.; Villamiel, M.; Garcia-Perez, J. V. Air-borne Ultrasound Application in the Convective Drying of Strawberry. J. Food Eng. 2014, 128, 132–139. DOI:10.1016/j.jfoodeng.2013.12.021.
  • Cárcel, J. A.; Castillo, D.; Simal, S.; Mulet, A. Influence of Temperature and Ultrasound on Drying Kinetics and Antioxidant Properties of Red Pepper. Drying Technol. 2018, 1, 1–8. DOI:10.1080/07373937.2018.1473417.
  • Kowalski, S. J.; Pawłowski, A.; Szadzińska, J.; Łechtańska, J.; Stasiak, M. High Power Airborne Ultrasound Assist in Combined Drying of Raspberries. Innovative Food Sci. Emerg. Technol. 2016, 34, 225–233. DOI:10.1016/j.ifset.2016.02.006.
  • Liu, Y.; Sun, C.; Lei, Y.; Yu, H.; Xi, H.; Duan, X. Contact Ultrasound Strengthened Far-Infrared Radiation Drying on Pear Slices: Effects on Drying Characteristics, Microstructure, and Quality Attributes. Drying Technol. 2018, 1, 1–14. DOI:10.1080/07373937.2018.1458317.
  • Ozuna, C.; Carcel, J. A.; Garcia-Perez, J. V.; Mulet, A. Improvement of Water Transport Mechanisms during Potato Drying by Applying Ultrasound. J. Sci. Food Agric. 2011, 91, 2511–2517. DOI:10.1002/jsfa.4344.
  • García-Pérez, J. V.; Ozuna, C.; Ortuño, C.; Cárcel, J. A.; Mulet, A. Modeling Ultrasonically Assisted Convective Drying of Eggplant. Drying Technology 2011, 29, 1499–1509. DOI:10.1080/07373937.2011.576321.
  • Goula, A. M.; Kokolaki, M.; Daftsiou, E. Use of Ultrasound for Osmotic Dehydration. The Case of Potatoes. Food Bioprod. Process. 2017, 105, 157–170. DOI:10.1016/j.fbp.2017.07.008.
  • Magalhães, M. L.; Cartaxo, S. J. M.; Gallão, M. I.; García-Pérez, J. V.; Cárcel, J. A.; Rodrigues, S.; Fernandes, F. A. N. Drying Intensification Combining Ultrasound Pre-treatment and Ultrasound-Assisted Air Drying. J. Food Eng. 2017, 215, 72–77. DOI:10.1016/j.jfoodeng.2017.07.027.
  • Mohammadalinejhad, S.; Dehghannya, J. Effects of Ultrasound Frequency and Application Time Prior to Deep-Fat Frying on Quality Aspects of Fried Potato Strips. Innovative Food Sci. Emerg. Technol. 2018, 47, 493–503. DOI:10.1016/j.ifset.2018.05.001.
  • Simal, S.; Mulet, A.; Tarrazo, J.; Rosselló, C. Drying Models for Green Peas. Food Chem. 1996, 55, 121–128. DOI:10.1016/0308-8146(95)00074-7.
  • Schiffmann, R. F. Handbook of Industrial Drying-Chapter 11: Microwave and Dielectric Drying. CRC Press: New York, 1995; ISBN 824789962, 9780824789961.
  • Rosselló, C.; Simal, S.; SanJuan, N.; Mulet, A. Nonisotropic Mass Transfer Model for Green Bean Drying. J. Agric. Food Chem. 1997, 45, 337–342. DOI:10.1021/jf960534c.
  • Dueik, V.; Moreno, M. C.; Bouchon, P. Microstructural Approach to Understand Oil Absorption during Vacuum and Atmospheric Frying. J. Food Eng. 2012, 111, 528–536. DOI:10.1016/j.jfoodeng.2012.02.027.
  • Bouchon, P.; Hollins, P.; Pearson, M.; Pyle, D. L.; Tobin, M. J. Oil Distribution in Fried Potatoes Monitored by Infrared Microspectroscopy. J. Food Sci. 2001, 66, 918–923. DOI:10.1111/j.1365-2621.2001.tb08212.x.
  • Dehghannya, J.; Abedpour, L. Influence of a Three Stage Hybrid Ultrasound-Osmotic-Frying Process on Production of Low-Fat Fried Potato Strips. J. Sci. Food Agric. 2018, 98, 1485–1491. DOI:10.1002/jsfa.8617.
  • Troncoso, E.; Pedreschi, F.; Zúñiga, R. N. Comparative Study of Physical and Sensory Properties of Pre-treated Potato Slices during Vacuum and Atmospheric Frying. LWT Food Sci. Technol. 2009, 42, 187–195. DOI:10.1016/j.lwt.2008.05.013.
  • Zhao, Y.-Y.; Yi, J.-Y.; Bi, J.-F.; Chen, Q.-Q.; Zhou, M.; Zhang, B. Improving of Texture and Rehydration Properties by Ultrasound Pretreatment for Infrared-Dried Shiitake Mushroom Slices. Drying Technol. 2018, 1, 1–11. DOI:10.1080/07373937.2018.1456449.
  • Devi, S.; Zhang, M.; Law, C. L. Effect of Ultrasound and Microwave Assisted Vacuum Frying on Mushroom (Agaricus bisporus) Chips Quality. Food Biosci. 2018, 25, 111–117. DOI:10.1016/j.fbio.2018.08.004.
  • Garcia-Perez, J. V.; Carcel, J. A.; Riera, E.; Rosselló, C.; Mulet, A. Intensification of Low-Temperature Drying by Using Ultrasound. Drying Technol. 2012, 30, 1199–1208. DOI:10.1080/07373937.2012.675533.
  • Kowalski, S. J.; Pawłowski, A. Intensification of Apple Drying Due to Ultrasound Enhancement. J. Food Eng. 2015, 156, 1–9. DOI:10.1016/j.jfoodeng.2015.01.023.
  • Martins, M. P.; Cortés, E. J.; Eim, V.; Mulet, A.; Cárcel, J. A. Stabilization of Apple Peel by Drying. Influence of Temperature and Ultrasound Application on Drying Kinetics and Product Quality. Drying Technol. 2018, 1, 1–10. DOI:10.1080/07373937.2018.1474476.
  • Cui, Z.-W.; Xu, S.-Y.; Sun, D.-W. Effect of Microwave-Vacuum Drying on the Carotenoids Retention of Carrot Slices and Chlorophyll Retention of Chinese Chive Leaves. Drying Technol. 2004, 22, 563–575. DOI:10.1081/DRT-120030001.
  • Frias, J.; Penas, E.; Ullate, M.; Vidal-Valverde, C. Influence of Drying by Convective Air Dryer or Power Ultrasound on the Vitamin C and β-carotene Content of Carrots . J. Agric. Food Chem. 2010, 58, 10539–10544.
  • Roberts, J. S.; Kidd, D. R.; Padilla-Zakour, O. Drying Kinetics of Grape Seeds. J. Food Eng. 2008, 89, 460–465. DOI:10.1016/j.jfoodeng.2008.05.030.
  • Singh, S.; Raina, C. S.; Bawa, A. S.; Saxena, D. C. Effect of Pretreatments on Drying and Rehydration Kinetics and Color of Sweet Potato Slices. Drying Technol. 2006, 24, 1487–1494. DOI:10.1080/07373930600952834.
  • Henderson, S. M. Progress in Developing the Thin Layer Drying Equation. Trans. ASAE. 1974, 17, 1167.
  • Xanthopoulos, G.; Lambrinos, G.; Manolopoulou, H. Evaluation of Thin-Layer Models for Mushroom (Agaricus bisporus) Drying. Drying Technol. 2007, 25, 1471–1481. DOI:10.1080/07373930701537179.
  • Gamlı, Ö. F. Effective Moisture Diffusivity and Drying Characteristics of Tomato Slices during Convectional Drying. GIDA-J. Food. 2011, 36, 201–208.
  • White, G.; Ross, I.; Poneleit, C. Fully-Exposed Drying of Popcorn. Trans. ASAE. 1981, 24, 466–0468.
  • Verma, L. R.; Bucklin, R. A.; Endan, J. B.; Wratten, F. T. Effects of Drying Air Parameters on Rice Drying Models. Trans. ASAE. 1985, 28, 296–301.
  • Yaldiz, O.; Ertekin, C.; Uzun, H. I. Mathematical Modeling of Thin Layer Solar Drying of Sultana Grapes. Energy. 2001, 26, 457–465. DOI:10.1016/S0360-5442(01)00018-4.
  • Thompson, T.; Peart, R.; Foster, G. Mathematical Simulation of Corn Drying—A New Model. Trans. ASAE. 1968, 11, 582–586.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.