Publication Cover
Drying Technology
An International Journal
Volume 37, 2019 - Issue 16
233
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

An approach for indirect monitoring of moisture content in rubberwood (Hevea brasiliensis) during hot air drying

, &
Pages 2116-2125 | Received 24 Jul 2018, Accepted 23 Dec 2018, Published online: 24 Jan 2019

References

  • Theppaya, T.; Prasertsan, S. Parameters Influencing Drying Behavior of Rubber Wood (Hevea Brazilliensis) as Determined from Desorption Experiment. Drying Technol. 2002, 20, 507–525. DOI: 10.1081/DRT-120002554.
  • Thai Customs. Trade Statistics Report; 2017. http://www.customs.go.th/statistic_report.php?tab=by_statistic_code (accessed Sep 15, 2018).
  • Thailand Ministry of Finance Operation Center. The Top 15 Highest Export Value; 2017. http://dataservices.mof.go.th/Dataservices/IETopExport?language=EN (accessed Oct 3, 2018).
  • Yamsaengsung, R.; Sattho, T. Superheated Steam Vacuum Drying of Rubberwood. Drying Technol. 2008, 26, 798–805. DOI: 10.1080/07373930802046518.
  • Erwin, Hwang, W.-J.; Imamura, Y. Micromorphology of Abnormal and Decayed Xylem in Rubberwood Canker. J. Wood Sci. 2008, 54, 414–419. DOI: 10.1007/s10086-008-0959-3.
  • Ratnasingam, J.; Grohmann, R. Superheated Steam Application to Optimize the Kiln Drying of Rubberwood (Hevea Brasiliensis). Eur. J. Wood Prod. 2015, 73, 407–409. DOI: 10.1007/s00107-015-0898-9.
  • Moutee, M.; Fortin, Y.; Fafard, M. A Global Rheological Model of Wood Cantilever as Applied to Wood Drying. Wood Sci. Technol. 2007, 41, 209–234. DOI: 10.1007/s00226-006-0106-5.
  • Dietsch, P.; Franke, S.; Franke, B.; Gamper, A.; Winter, S. Methods to Determine Wood Moisture Content and Their Applicability in Monitoring Concepts. J. Civil Struct. Health Monit. 2015, 5, 115–127. DOI: 10.1007/s13349-014-0082-7.
  • Čermák, P.; Horáček, P.; Rademacher, P. Measured Temperature and Moisture Profiles during Thermal Modification of Beech (Fagus sylvatica L.) and Spruce (Picea abies L. Karst.) Wood. Holzforschung 2013, 68, 175–183. DOI: 10.1515/hf-2013-0047.
  • Ananias, R. A.; Mena, M.; Elustondo, D. M.; Diaz-Vaz, J. E.; Valenzuela, L.; Salinas, C. Testing New in-Kiln Meter for Monitoring Lumber Moisture Content during Drying. Drying Technol. 2013, 31, 277–281. DOI: 10.1080/07373937.2012.725234.
  • Oliveira, L.; Elustondo, D.; Mujundar, A.; Ananias, R. Canadian Developments in Kiln Drying. Drying Technol. 2012, 30, 1792–1799. DOI: 10.1080/07373937.2012.708003.
  • Cai, Z. A New Method of Determining Moisture Gradient in Wood. For. Prod. J. 2008, 58, 41–45.
  • Cai, Y.; Hayashi, K. New Monitoring Concept of Moisture Content Distribution in Wood during RF/Vacuum Drying. J. Wood Sci. 2007, 53, 1–4. DOI: 10.1007/s10086-006-0813-4.
  • Elustondo, D. M.; Oliveira, L.; Lister, P. Temperature Drop Sensor for Monitoring Kiln Drying of Lumber. Holzforschung 2009, 63, 334–339. DOI: 10.1515/HF.2009.058.
  • Theppaya, T.; Prasertsan, S. Optimization of Rubberwood Drying by Response Surface Method and Multiple Contour Plots. Drying Technol. 2004, 22, 1637–1660. DOI: 10.1081/DRT-200025622.
  • Tomad, S.; Matan, N.; Diawanich, P.; Kyokong, B. Internal Stress Measurement during Drying of Rubberwood Lumber: Effects of Wet-Bulb Temperature in Various Drying Strategies. Holzforschung 2012, 66, 645–654. DOI: 10.1515/hf-2011-0183.
  • Jantawee, S.; Leelatanon, S.; Diawanich, P.; Matan, N. A New Assessment of Internal Stress within Kiln-Dried Lumber Using a Restoring Force Technique on a Half-Split Specimen. Wood Sci. Technol. 2016, 50, 1277–1292. DOI: 10.1007/s00226-016-0852-y.
  • Lianbai, G. Recent Research and Development in Wood Drying Technologies in China. Drying Technol. 2007, 25, 463–469. DOI: 10.1080/07373930601183900.
  • Ratanawilai, T.; Nuntadusit, C.; Promtong, N. Drying Characteristics of Rubberwood by Impinging Hot-Air and Microwave Heating. Wood Res. 2015, 60, 59–70.
  • Srivaro, S.; Matan, N.; Kyokong, B. Accelerated Conventional Temperature Drying of 30 mm Thick Rubberwood Lumber. Songklanakharin J. Sci. Technol. 2008, 30, 475–483.
  • Baranski, J. Moisture Content during and after High- and Normal-Temperature Drying Processes of Wood. Drying Technol. 2018, 36, 751–761. DOI: 10.1080/07373937.2017.1355319.
  • Tenorio, C.; Salas, C.; Moya, R. Kiln Drying Behavior Utilizing Drying Rate of Lumber from Six Fast-Growth Plantation Species in Costa Rica. Drying Technol. 2016, 34, 443–453. DOI: 10.1080/07373937.2015.1060493.
  • Altgen, M.; Hofmann, T.; Militz, H. Wood Moisture Content during the Thermal Modification Process Affects the Improvement in Hygroscopicity of Scots Pine Sapwood. Wood Sci. Technol. 2016, 50, 1181–1195. DOI: 10.1007/s00226-016-0845-x.
  • Haque, M. N. Analysis of Heat and Mass Transfer during High-Temperature Drying of Pinus Radiata. Drying Technol. 2007, 25, 379–389. DOI: 10.1080/07373930601184551.
  • Sik, H. S.; Choo, K. T.; Zakaria, S.; Ahmad, S.; How, S. S.; Chia, C. H.; Yusoff, M. Dimensional Stability of High Temperature-Dried Rubberwood Solid Lumber at Two Equilibrium Moisture Content Conditions. Drying Technol. 2010, 28, 1083–1090. DOI: 10.1080/07373937.2010.506162.
  • Pang, S. Emissions from Kiln Drying of Pinus Radiata Timber: Analysis, Recovery, and Treatment. Drying Technol. 2012, 30, 1099–1104. DOI: 10.1080/07373937.2012.685673.
  • Haque, M. N.; Sargent, R. Standard and Superheated Steam Schedules for Radiata Pine Single-Board Drying: Model Prediction and Actual Measurements. Drying Technol. 2008, 26, 186–191. DOI: 10.1080/07373930701831416.
  • Cengel, Y.; Boles, M. Thermodynamics: An Engineering Approach with Student Resources DVD; 7th ed.; McGraw-Hill Science/Engineering/Math: New York, 2010.
  • Li, R.; Liu, C.; Zhang, C.; Shen, J.; Wang, L.; Jia, C. Moisture Transformation and Transport during the Drying Process for Radix Paeoniae Alba Slices. Applied Thermal Eng. 2017, 110, 25–31. DOI: 10.1016/j.applthermaleng.2016.08.123.
  • Rahimi-Ajdadi, F.; Abbaspour-Gilandeh, Y.; Mollazade, K.; Hasanzadeh, R. P. R. Development of a Novel Machine Vision Procedure for Rapid and Non-Contact Measurement of Soil Moisture Content. Measurement 2018, 121, 179–189. DOI: 10.1016/j.measurement.2018.02.060.
  • Tripathy, P. P.; Kumar, S. Neural Network Approach for Food Temperature Prediction during Solar Drying. Int. J. Thermal Sci. 2009, 48, 1452–1459. DOI: 10.1016/j.ijthermalsci.2008.11.014.
  • Jangam, S. V.; Joshi, V. S.; Mujumdar, A. S.; Thorat, B. N. Studies on Dehydration of Sapota (Achras Zapota). Drying Technol. 2008, 26, 369–377. DOI: 10.1080/07373930801898190.
  • Moya, R.; Urueña, E.; Salas, C.; Muñoz, F.; Espinoza, O. Kiln Drying Behavior of Lumber from Ten Fast-Growth Plantation Species in Costa Rica. Wood Mater. Sci. Eng. 2013, 8, 37–45. DOI: 10.1080/17480272.2012.707686.
  • Varith, J.; Dijkanarukkul, P.; Achariyaviriya, A.; Achariyaviriya, S. Combined Microwave-Hot Air Drying of Peeled Longan. J. Food Eng. 2007, 81, 459–468. DOI: 10.1016/j.jfoodeng.2006.11.023.
  • Siau, J. F. Transport Processes in Wood; Springer: New York, 1984.
  • Tomad, J.; Jantawee, S.; Preechatiwong, W.; Matan, N. Within-Tree Variability of Internal Stress Generated during Drying of Rubberwood Lumber. Eur. J. Wood Prod. 2017, 76(1), 1–10. DOI: 10.1007/s00107-017-1204-9.
  • Daassi-Gnaba, H.; Oussar, Y.; Merlan, M.; Ditchi, T.; Géron, E.; Holé, S. Wood Moisture Content Prediction Using Feature Selection Techniques and a Kernel Method. Neurocomputing 2017, 237, 79–91. DOI: 10.1016/j.neucom.2016.09.005.
  • Nabhani, M.; Laghdir, A.; Fortin, Y. Simulation of High-Temperature Drying of Wood. Drying. Technol. 2010, 28, 1142–1147. DOI: 10.1080/07373937.2010.483563.
  • Ananias, R. A.; Venegas, R.; Salvo, L.; Elustondo, D. Kiln Schedule Certification for Industrial Drying of Radiata Pine. Wood Fiber Sci. 2013, 45, 98–104.
  • Pakowski, Z.; Adamski, R. On Prediction of the Drying Rate in Superheated Steam Drying Process. Drying Technol. 2011, 29, 1492–1498. DOI: 10.1080/07373937.2011.576320.
  • Solar, M.; Solar, A. Non-Destructive Determination of Moisture Content in Hazelnut (Corylus Avellana L.). Comput. Electr. Agr. 2016, 121, 320–330. DOI: 10.1016/j.compag.2016.01.002.
  • Koumbi-Mounanga, T.; Groves, K.; Leblon, B.; Zhou, G.; Cooper, P. A. Estimation of Moisture Content of Trembling Aspen (Populus tremuloides Michx.) Strands by Near Infrared Spectroscopy (NIRS). Eur. J. Wood Prod. 2015, 73, 43–50. DOI: 10.1007/s00107-014-0856-y.
  • Liu, H.; Yang, L.; Cai, Y.; Sugimori, M.; Hayashi, K. Effect of EMC and Air in Wood on the New in-Process Moisture Content Monitoring Concept under Radio-Frequency/Vacuum (RF/V) Drying. J. Wood Sci. 2010, 56, 95–99. DOI: 10.1007/s10086-009-1079-4.
  • Yang, L.; Liu, H.; Cai, Y.; Hayashi, K.; Li, K. Real-Time Moisture Content Measurement of Wood under Radio-Frequency/Vacuum (RF/V) Drying. Drying. Technol. 2014, 32, 1675–1682. DOI: 10.1080/07373937.2014.917426.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.