Publication Cover
Drying Technology
An International Journal
Volume 37, 2019 - Issue 13
212
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Experimental study of thermal fragmentation of lignite in drying process

, , , , &
Pages 1731-1742 | Received 19 May 2018, Accepted 27 Dec 2018, Published online: 31 Jan 2019

References

  • Song, Z.; Yao, L.; Jing, C.; Zhao, X.; Wang, W.; Ma, C. Drying Behavior of Lignite under Microwave Heating. Drying Technol. 2017, 35, 433–443. DOI:10.1080/07373937.2016.1182547.
  • Tahmasebi, A.; Yu, J. L.; Han, Y. N.; Yin, F. K.; Bhattacharya, S.; Stokie, D. Study of Chemical Structure Changes of Chinese Lignite upon Drying in Superheated Steam, Microwave, and Hot Air. Energy Fuels. 2012, 26, 3651–3660. DOI:10.1021/ef300559b.
  • Shang, X.; Si, C. D.; Wu, J.; Miao, Z.; Zhang, Y.; Wang, Y.; Wang, B.; Hou, K. Comparison of Drying Methods on Physical and Chemical Properties of Shengli Lignite. Drying Technol. 2015, 34, 150709074801005.
  • Nikolopoulos, N.; Violidakis, I.; Karampinis, E.; Agraniotis, M.; Bergins, C.; Grammelis, P.; Kakaras, E. Report on Comparison among Current Industrial Scale Lignite Drying Technologies (A Critical Review of Current Technologies). Fuel. 2015, 155, 86–114. DOI:10.1016/j.fuel.2015.03.065.
  • Tatemoto, Y.; Yano, S.; Takeshita, T.; Noda, K.; Komatsu, N. Effect of Fluidizing Particle on Drying Characteristics of Porous Materials in Superheated Steam Fluidized Bed under Reduced Pressure. Drying Technol. 2008, 26, 168–175. DOI:10.1080/07373930701831267.
  • Tsetsekou, A. H. Evolution Lignite Mesopore Structure during Drying. Effect of Temperature and Heating Time. Drying Technol. 2001, 19, 35–64. DOI:10.1081/DRT-100001351.
  • Man, C.; Zhu, X.; Gao, X.; Che, D. Combustion and Pollutant Emission Characteristics of Lignite Dried by Low Temperature Air. Drying Technol. 2015, 33, 616–631. DOI:10.1080/07373937.2014.967402.
  • Zhao, H.; Geng, X. Z.; Yu, J. L.; Xin, B. B.; Yin, F. K.; Tahmasebi, A. Effects of Drying Method on Self-heating Behavior of Lignite during Low-temperature Oxidation. Fuel Process. Technol. 2016, 151, 11–18. DOI:10.1016/j.fuproc.2016.05.031.
  • Wen, Y.; Liao, J.; Liu, X.; Wei, F.; Chang, L. Removal Behaviors of Moisture in Raw Lignite and Moisturized Coal and Their Dewatering Kinetics Analysis. Drying Technol. 2017, 35, 88–96. DOI:10.1080/07373937.2016.1160246.
  • Feng, L.; Tang, J.; Ma, Z.; Wan, Y. Effect of Mechanical Thermal Expression Drying Technology on Lignite Structure. Drying Technol. 2017, 35, 356–362. DOI:10.1080/07373937.2016.1174938.
  • Zhao, P. F.; Zhao, Y. M.; Luo, Z. F.; Chen, Z. Q.; Duan, C. L.; Song, S. L. Effect of Operating Conditions on Drying of Chinese Lignite in a Vibration Fluidized Bed. Fuel Process. Technol. 2014, 128, 257–264. DOI:10.1016/j.fuproc.2014.07.014.
  • Lechner, S. Drying of Lignite in a Pressurized Steam Fluidized Bed-theory and Experiments. Drying Technol. 2009, 28, 5–19. DOI:10.1080/07373930903423491.
  • Akkoyunlu, M. T.; Erdem, H. H.; Pusat, S. Determination of Economic Upper Limit of Drying Processes in Coal-fired Power Plants. Drying Technol. 2016, 34, 420–427. DOI:10.1080/07373937.2015.1060489.
  • Pusat, S.; Akkoyunlu, M. T.; Erdem, H. H.; Teke, I. Effects of Bed Height and Particle Size on Drying of a Turkish Lignite. Int. J. Coal Prep. Util. 2015, 35, 196–205. DOI:10.1080/19392699.2015.1009051.
  • Jangam, S. V.; Karthikeyan, M.; Mujumdar, A. S. A Critical Assessment of Industrial Coal Drying Technologies: Role of Energy, Emissions, Risk and Sustainability. Drying Technol. 2011, 29, 395–407. DOI:10.1080/07373937.2010.498070.
  • He, Q. Q.; Chen, J. P.; Miao, Z. Y.; Wan, K. J.; Tian, J. Y.; Chen, Z. S.; Wan, Y. J. Thermal Fragmentation and Pulverization Properties of Lignite in Drying Process and Its Mechanism. Drying Technol. 2017, 3, 1–9.
  • Senneca, O.; Urciuolo, M.; Chirone, R.; Cumbo, D. An Experimental Study of Fragmentation of Coals during Fast Pyrolysis at High Temperature and Pressure. Fuel. 2011, 90, 2931–2938. DOI:10.1016/j.fuel.2011.04.012.
  • Dacombe, P.; Pourkashanian, M.; Williams, A.; Yap, L. Combustion-Induced Fragmentation Behavior of Isolated Coal Particles. Fuel. 1999, 78, 1847–1857. DOI:10.1016/S0016-2361(99)00076-9.
  • Patadiya, D. M.; Jaisankar, S.; Sheshadri, T. S. Detonation Initiated Disintegration of Coal Particle Due to the Maximum Strain Energy Theory. J. Coal Sci. Eng. China. 2013, 19, 435–440. DOI:10.1007/s12404-013-0401-3.
  • Sun, N. X. Thermal Sensitive Characteristics and Mechanism of Thermal Fragmentation of Low Rank Coal. PhD thesis, China University of Mining & Technology (Beijing), 2016.
  • Chen, J. P.; Miao, Z. Y.; Wan, Y. J.; Chen, Z. S.; He, Q. Q.; Tian, J. Y. Effect of Moisture Distribution in Pore Structure on Fragmentation Characteristics of Lignite. Drying Technol. 2018, (3, ):1–9.
  • Lee, J. M.; Kim, J. S.; Kim, J. J. Comminution Characteristics of Korean Anthracite in a CFB Reactor. Fuel. 2003, 82, 1349–1357. DOI:10.1016/S0016-2361(03)00022-X.
  • Cui, T. M.; Zhou, Z. J.; Dai, Z. H.; Li, C.; Yu, G. S.; Wang, F. C. Primary Fragmentation Characteristics of Coal Particles during Rapid Pyrolysis. Energy Fuels. 2015, 29, 6231–6241. DOI:10.1021/acs.energyfuels.5b01289.
  • Kosowska, M.; Gajewski, W. Thermal Fragmentation of Coal Particles. Power HandingProcess. 2002, 14, 226–228.
  • Senneca, O.; Cortese, L. Thermal Annealing of Coal at High Temperature and High Pressure. Effects on Fragmentation and on Rate of Combustion, gasification and Oxy-Combustion. Fuel. 2014, 116, 221–228. DOI:10.1016/j.fuel.2013.07.065.
  • Si, C.; Wu, J.; Wang, Y.; Shang, X.; Zhang, Y.; Liu, G. Experimental Study on Three-Stage Microwave-Assisted Fluidized Bed Drying of Shengli Lump Lignite. Drying Technol. 2016, 34, 685–691. DOI:10.1080/07373937.2015.1070359.
  • Zhang, H.; Cen, K.; Yan, J.; Ni, M. The Fragmentation of Coal Particles during the Coal Combustion in a Fluidized Bed. Fuel. 2002, 81, 1835–1840. DOI:10.1016/S0016-2361(02)00111-4.
  • Zhong, S.; Baitalow, F.; Nikrityuk, P.; Gutte, H.; Meyer, B. The Effect of Particle Size on the Strength Parameters of German Brown Coal and Its Chars. Fuel. 2014, 125, 200–205. DOI:10.1016/j.fuel.2014.02.022.
  • Lee, S. H.; Kim, S. D.; Lee, D. H. Particle Size Reduction of Anthracite Coals during Devolatilization in a Thermobalance Reactor. Fuel. 2002, 81, 1633–1639. DOI:10.1016/S0016-2361(02)00094-7.
  • Tang, S.; Tang, C.; Zhu, W.; Wang, S.; Yu, Q. Numerical Investigation on Rock Failure Process Induced by Thermal Stress. Chinese J. Rock Mech. Eng. 2006, 25, 2071–2078.
  • Dill, H. G.; Pöllmann, H. Chemical Composition and Mineral Matter of Paralic and Limnic Coal Types of Lignite through Anthracite Rank (Germany). Bull. Can. Petrol. Geol. 2002, 19, 851–867.
  • Shang, X.; Wu, J.; Zhang, Y.; Shang, Y.; Zhou, G.; Miao, Z. Effect of Mineral Content on Moisture Re-adsorption of Dewatered Lignite. J. China Univ. Min. Technol. 2014, 43, 1102–1107.
  • Moqsud, M. A.; Hayashi, S.; Du, Y. J.; Suetsugu, D. Appraisal of Thermal Properties of Mud in the Ariake Sea, Japan. Am. J. Environ. Sci. 2008, 4, 129–135. DOI:10.3844/ajessp.2008.129.135.
  • Zhang, H.; Mo, Y. X.; Sun, M. Determination of the Mineral Distribution in Pulverized Coal Using Densitometry and Laser Particle Sizing. Energy Fuels. 2005, 19, 2261–2267.
  • Rusnak, J.; Mark, C. Using the Point Load Test to Determine the Uniaxial Compressive Strength of Coal Measure Rock. Proceedings of the 19th Internal Conference on Ground Control in Mining, West Virginia University, Morgantown, WV, 2000.
  • Basu, A.; Kamran, M. Point Load Test on Schistose Rocks and Its Applicability in Predicting Uniaxial Compressive Strength. Int. J. Rock Mech. Min. Sci. 2010, 47, 823–828. DOI:10.1016/j.ijrmms.2010.04.006.
  • Franklin, J. A. Suggested Method for Determining Point Load Strength. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1985, 22, 51–60. DOI:10.1016/0148-9062(85)92327-7.
  • Quane, S. L.; Russell, J. K. Rock Strength as a Metric of Welding Intensity in Pyroclastic Deposits. Eur. J. Mineral. 2003, 15, 855–864. DOI:10.1127/0935-1221/2003/0015-0855.
  • Cheng, W. M.; Xue, J.; Xie, J.; Zhou, G.; Nie, W. A Model of Lignite Macromolecular Structures and Its Effect on the Wettability of Coal: A Case Study. Energy Fuels. 2017, 31, 13834–13841. DOI:10.1021/acs.energyfuels.7b01267.
  • Pike, S.; Dewison, M. G.; Spears, D. A. Sources of Error in Low Temperature Plasma Ashing Procedures for Quantitative Mineral Analysis of Coal Ash. Fuel. 1989, 68, 664–668. DOI:10.1016/0016-2361(89)90170-1.
  • Zhang, Y.; Zhao, Y. S. Analysis of Correlation of Rock Thermal Cracking with Inhomogeneity. J. Lanzhou Univ. Technol. 2009, 35, 135–137.
  • Pusat, S.; Akkoyunlu, M. T.; Erdem, H. H. Effect of Drying on Coal Particle Size. Presented at International Conference on Advances in Mechanical Engineering (ICAME ’15), Istanbul, Turkey, 2015.
  • Wan, K.; Chen, J.; Miao, Z.; He, Q.; Tian, J. Experimental Investigation of the Effects of Temperature, Moisture, and Physical Structure Variations on the Thermal Properties of Lignite. Energy Fuels. 2017, 37, 57–80.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.