Publication Cover
Drying Technology
An International Journal
Volume 38, 2020 - Issue 3
340
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Spectral and thermal analysis of Eucalyptus wood drying at different temperature and methods

, , , , &
Pages 313-320 | Received 02 Feb 2018, Accepted 03 Jan 2019, Published online: 31 Jan 2019

References

  • Ding, W. D.; Koubaa, A.; Chaala, A. Mechanical Properties of MMA-hardened Hybrid Poplar Wood[J]. Ind. Crops Prod. 2013, 46, 304–310. DOI:10.1016/j.indcrop.2013.02.004.
  • Ouertani, S.; Koubaa, A.; Azzouz, S.; Hassini, L.; Dhib, K. B.; Belghith, A. Vacuum Contact Drying Kinetics of Jack Pine Wood and Its Influence on Mechanical Properties: industrial Applications[J]. Heat Mass Transfer 2015, 51, 1029–1039. DOI:10.1007/s00231-014-1476-0.
  • Haque, M. N. Analysis of Heat and Mass Transfer during High-temperature Drying of Pinus Radiata. Drying Technol. 2007, 25, 370–389.
  • Herrera-Diaz, R.; Sepulveda-Villarroel, V.; Perez-Pena, N. Effect of Wood Drying and Heat Modification on Some Physical and Mechanical Properties of Radiata Pine. Drying Technol. 2018, 36, 537–544.
  • C. H R. A Review on Processing and Utilization of Eucalypt Wood. Eucalypt Sci. Technol. 2010, 27, 68–74.
  • Hansmann, C.; Stingl, R.; Prieto, O. G. High-frequency Energy-assisted Vacuum Drying of Fresh Eucalyptus Globulus. Drying Technol. 2008, 26, 611–616.
  • Liu, L. Y. A. H. A Review of Eucalyptus Wood Collapse and Its Control during Drying. Bioresource. 2018, 13, 2171–2181.
  • Borrega, M.; Kärenlampi, P. P. Three Mechanisms Affecting the Mechanical Properties of Spruce Wood Dried at High Temperatures. J. Wood Sci. 2010, 56, 87–94. DOI:10.1007/s10086-009-1076-7.
  • Gunduz, G.; Aydemir, D. Some Physical Properties of Heat-treated Hornbeam (Carpinus betulus L.) Wood. Drying Technol. 2009, 27, 714–720. DOI:10.1080/07373930902827700.
  • Kaygın, B.; Gunduz, G.; Aydemir, D. Some Physical Properties of Heat Treated Paulownia (Paulownia Elongate) wood. Drying Technol. 2009, 27, 89–93. DOI:10.1080/07373930802565921.
  • Salas, C.; Moya, R. Kiln-, Solar-, and Air-Drying Behavior of Lumber of Tectona grandis and Gmelina arborea from Fast-Grown Plantations: Moisture Content, Wood Color, and Drying Defects. Drying Technol. 2014, 32, 301–310. DOI:10.1080/07373937.2013.829087.
  • Bao, Y.; Zhou, Y. Comparative Study of Moisture Absorption and Dimensional Stability of Chinese Cedar Wood with Conventional Drying and Superheated Steam Drying. Drying Technol. 2017, 35, 860–866. DOI:10.1080/07373937.2016.1222417.
  • Chen, W.; Yu, H.; Liu, Y.; Chen, P.; Zhang, M.; Hai, Y. Individualization of Cellulose Nanofibers from Wood Using High-intensity Ultrasonication Combined with Chemical Pretreatments. Carbohydr. Polym. 2011, 83, 1804–1811. DOI:10.1016/j.carbpol.2010.10.040.
  • Dashti, H.; Tarmian, A.; Faezipour, M.; et al. Mass Transfer through Microwave-Treated Fir Wood (Abies albaL.): a Gymnosperm Species with Torus Margo Pit Membrane. Drying Technol. 2013, 31, 359–364. DOI:10.1080/07373937.2012.736908.
  • Chetehouna, K.; Belayach, N.; Rengel, B.; Gillard, P. Investigation on the Thermal Degradation and Kinetic Parameters of Innovative Insulation Materials Using TGA-MS. Appl. Therm. Eng. 2015, 81, 177–184. DOI:10.1016/j.applthermaleng.2015.02.037.
  • Buoso, M. C.; De Poli, M.; Matthaes, P.; et al. Nondestructive Wood Discrimination: FTIR – Fourier Transform Infrared Spectroscopy in the Characterization of Different Wood Species Used for Artistic Objects. Int. J. Mod. Phys. Conf. Ser. 2016, 44, 1660212. DOI:10.1142/S201019451660212X.
  • Li, L.; Wang, X.; Wu, F. Chemical Analysis of Densification, Drying, and Heat Treatment of Scots Pine (Pinus sylvestris L.) through a Hot-Pressing Process. BioResources. 2016, 11, 3856–3874.
  • Guo, X.; Wu, Y.; Yan, N. In Situ micro-FTIR Observation of Molecular Association of Adsorbed Water with Heat-treated Wood. Wood Sci. Technol. 2018, 52, 971–985. DOI:10.1007/s00226-018-1020-3.
  • Dumanli, A. G.; Taş, S.; Yürüm, Y. Co-firing of Biomass with Coals. J. Therm. Anal. Calorim. 2011, 103, 925–933. DOI:10.1007/s10973-010-1126-9.
  • Szubel, M.; Filipowicz, M.; Goryl, W.; et al. Characterization of the Wood Combustion Process Based on the TG Analysis, Numerical Modelling and Measurements Performed on the Experimental Stand. E3S Web Conf. 2016, 10, 133.
  • Gao, Z.; Fan, Q.; He, Z.; Wang, Z.; Wang, X.; Sun, J. Effect of Biodegradation on Thermogravimetric and Chemical Characteristics of Hardwood and Softwood by Brown-rot Fungus. Bioresour. Technol. 2016, 211, 443–450.
  • Chen, Y.; Wan, J.; Zhang, X.; Ma, Y.; Wang, Y. Effect of Beating on Recycled Properties of Unbleached Eucalyptus Cellulose Fiber. Carbohydr. Polym. 2012, 87, 730–736. DOI:10.1016/j.carbpol.2011.08.051.
  • Segal, L.; Creely, J. J.; Martin, A. E.; Conrad, C. M. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Text. Res. J. 1959, 29, 786–794. DOI:10.1177/004051755902901003.
  • Patterson, A. X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials. Wiley. 1974, 79, 992.
  • Tomak, E. D.; Topaloglu, E.; Gumuskaya, E; Yildiz, U. C.; Nurgul, A. An FT-IR Study of the Changes in Chemical Composition of Bamboo Degraded by Brown-rot Fungi. Int. Biodeterior. Biodegrad. 2013, 85, 131–138. DOI:10.1016/j.ibiod.2013.05.029.
  • Oh, S. Y.; Yoo, D. I.; Shin, Y.; Kim, H. C.; Kim, H. Y.; Chung, Y. S.; Park, W. H.; Youk, J. H. Crystalline Structure Analysis of Cellulose Treated with Sodium Hydroxide and Carbon Dioxide by Means of X-ray Diffraction and FTIR Spectroscopy. Carbohydr. Res. 2005, 340, 2376–2391.
  • Torres, S. S.; Jomaa, W.; Puiggali, J.-R.; Avramidis, S. Multiphysics Modeling of Vacuum Drying of Wood. Appl. Math. Modell. 2011, 35, 5006–5016. DOI:10.1016/j.apm.2011.04.011.
  • Koumoutsakos, A.; Avramidis, S.; Hatzikiriakos, S. G. Radio Frequency Vacuum Drying of Wood. I. Mathematical Model. Drying Technol. 2001, 19, 65–84. DOI:10.1081/DRT-100001352.
  • Gao, M.; Sun, C.; Zhu, K. Thermal Degradation of Wood Treated with Guanidine Compounds in air: Flammability Study. J. Therm. Anal. Calorim. 2004, 75, 221–232. DOI:10.1023/B:JTAN.0000017344.01189.e5.
  • Grønli, M. G.; Várhegyi, G.; Di Blasi, C. Thermogravimetric Analysis and Devolatilization Kinetics of Wood. Ind. Eng. Chem. Res. 2002, 41, 4201–4208. DOI:10.1021/ie0201157.
  • Yu, H.; Liu, F.; Ke, M.; Zhang, X. Thermogravimetric Analysis and Kinetic Study of Bamboo Waste Treated by Echinodontium Taxodii Using a Modified Three-Parallel-Reactions Model. Bioresour. Technol. 2015, 185, 324–330.
  • Yang, Z. J. B. F. Effects of Spectral Pretreatment on the Prediction of Crystallinity of Wood Cellulose Using Near Infrared Spectroscopy. Spectrosc. Spectral Anal. 2007, 27, 435.
  • Freire, C. S. R.; Silvestre, A. J. D.; Neto, C. P.; Belgacem, M. N.; Gandini, A. Controlled Heterogeneous Modification of Cellulose Fibers with Fatty Acids: Effect of Reaction Conditions on the Extent of Esterification and Fiber Properties. J. Appl. Polym. Sci. 2006, 100, 1093–1102. DOI:10.1002/app.23454.
  • Jiang, J. L.; Lu, J. X. Dynamic Viscoelasticity of Wood after Various Drying Processes. Drying Technol. 2008, 26, 537–543. DOI:10.1080/07373930801944671.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.