Publication Cover
Drying Technology
An International Journal
Volume 38, 2020 - Issue 13
763
Views
22
CrossRef citations to date
0
Altmetric
Review Article

Modeling of heat and mass transfer within the grain storage ecosystem using numerical methods: A review

, , &
Pages 1677-1697 | Received 07 Mar 2019, Accepted 13 Aug 2019, Published online: 26 Aug 2019

References

  • Navarro, S. The Mechanics and Physics of Modern Grain Aeration Management; CRC Press: Boca Raton, 2001.
  • Magan, N.; Aldred, D. Post-Harvest Control Strategies: Minimizing Mycotoxins in the Food Chain. Int. J. Food Microbiol. 2007, 119, 131–139. DOI:10.1016/j.ijfoodmicro.2007.07.034.
  • Jayas, D. S.; White, N. D. G. Storage and Drying of Grain in Canada: Low Cost Approaches. Food Control. 2003, 14, 255–261. DOI:10.1016/S0956-7135(03)00014-8.
  • Tefera, T.; Kanampiu, F.; De Groote, H.; Hellin, J.; Mugo, S.; Kimenju, S.; Beyene, Y.; Boddupalli, P. M.; Shiferaw, B.; Banziger, M. The Metal Silo: An Effective Grain Storage Technology for Reducing Post-Harvest Insect and Pathogen Losses in Maize While Improving Smallholder Farmers’ Food Security in Developing Countries. Crop Prot. 2011, 30, 240–245. DOI:10.1016/j.cropro.2010.11.015.
  • Maier, D. E. Chilled Aeration and Storage of U.S. Crops–a Review. In Stored Product Protection: Proceedings of the 6th International Working Conference on Stored-Product Protection; Highley, E., Wright, E.J., Banks, H.J., Champ, B.R., Eds.; Canberra, Australia. CAB International: Wallingford, United Kingdom; 1994; pp 300–311.
  • Hood, T. J. A.; Thorpe, G. R. Effects of the Anisotropic Resistance to Air Flow on the Design of Aeration Systems for Bulk Stored Grains. Natl. Conf. Publ. - Inst. Eng. Aust. 1992, 92(11), 217–222.
  • Maier, D. E.; Montross, M. D. Modeling Aeration and Storage Management Strategies Previous Approaches to Modeling the Stored Grain Ecosystem. Proceedings of the 7th International Working Conference on Stored-product Protection; 1999.; Vol. 2, 1279–1300.
  • Singh, C. B.; Fielke, J. M. Recent Developments in Stored Grain Sensors, Monitoring and Management Technology. IEEE Instrum. Meas. Mag. 2017, 20, 32–55. DOI:10.1109/MIM.2017.7951690.
  • Trematerra, P. Aspects Related to Decision Support Tools and Integrated Pest Management in Food Chains. Food Control 2013, 34, 733–742. DOI:10.1016/j.foodcont.2013.06.020.
  • Nuttall, J. G.; O'Leary, G. J.; Panozzo, J. F.; Walker, C. K.; Barlow, K. M.; Fitzgerald, G. J. Models of Grain Quality in Wheat—a Review. Food Crop. Res. 2017, 202, 136–145. DOI:10.1016/j.fcr.2015.12.011.
  • Markowski, M.; Bialobrzewski, I.; Bowszys, J.; Suchecki, S. Simulation of Temperature Distribution in Stored Wheat without Aeration. Dry. Technol. 2007, 25, 1523–1532. DOI:10.1080/07373930701537419.
  • Gao, R.; Du, X.; Zeng, Y.; Li, Y.; Yan, J. A New Method to Simulate Irregular Particles by Discrete Element Method. J. Rock Mech. Geotech. Eng. 2012, 4, 276–281. DOI:10.3724/SP.J.1235.2012.00276.
  • Gao, M.; Cheng, X.; Du, X. Simulation of Bulk Density Distribution of Wheat in Silos by Finite Element Analysis. J. Stored Prod. Res. 2018, 77, 1–8. DOI:10.1016/j.jspr.2018.02.003.
  • Arlot, S.; Celisse, A. A Survey of Cross-Validation Procedures for Model Selection. Statist. Surv. 2010, 4, 40–79. DOI:10.1214/09-SS054.
  • Alagusundaram, K.; Jayas, D. S.; White, N. D. G.; Muir, W. E. Finite Difference Model of Three-Dimensional Heat Transfer in Grain Bins. Can. Agric. Eng. 1990, 32, 315–321.
  • Lawrence, J.; Maier, D. E.; Stroshine, R. L. Three-Dimensional Transient Heat, Mass, Momentum and Species Transfer in the Stored Grain Ecosystem: Part I. Model Development and Evaluation. Trans. ASAE 2013, 56, 179–188.
  • Thorpe, G. R. The Application of Computational Fluid Dynamics Codes to Simulate Heat and Moisture Transfer in Stored Grains. J. Stored Prod. Res. 2008, 44, 21–31. DOI:10.1016/j.jspr.2007.07.001.
  • Rusinek, R.; Kobyłka, R. Experimental Study and Discrete Element Method Modeling of Temperature Distributions in Rapeseed Stored in a Model Bin. J. Stored Prod. Res. 2014, 59, 254–259. DOI:10.1016/j.jspr.2014.03.009.
  • Kildashti, K.; Dong, K.; Samali, B.; Zheng, Q.; Yu, A. Evaluation of Contact Force Models for Discrete Modelling of Ellipsoidal Particles. Chem. Eng. Sci. 2018, 177, 1–17. DOI:10.1016/j.ces.2017.11.004.
  • Horabik, J.; Molenda, M. Parameters and Contact Models for DEM Simulations of Agricultural Granular Materials: A Review. Biosyst. Eng. 2016, 147, 206–225. DOI:10.1016/j.biosystemseng.2016.02.017.
  • Liang, Y.; Li, X. A New Model for Heat Transfer through the Contact Network of Randomly Packed Granular Material. Appl. Therm. Eng. 2014, 73, 982–990. DOI:10.1016/j.applthermaleng.2014.08.063.
  • Lu, G.; Third, J. R.; Müller, C. R. Discrete Element Models for Non-Spherical Particle Systems: From Theoretical Developments to Applications. Chem. Eng. Sci. 2015, 127, 425–465. DOI:10.1016/j.ces.2014.11.050.
  • Muir, W. E.; Fraser, B. M.; Sinha, R. N. Simulation Model of Two-Dimensional Heat Transfer in Controlled-Atmosphere Grain Bins. Dev. Agric. Eng. 1980, 1, 385–398. DOI:10.1016/B978-0-444-41939-2.50040-1.
  • Metzger, J. F.; Muir, W. E. Computer Model of Two-Dimensional Conduction and Forced Convection in Stored Grain. Can. Agric. Eng. 1983, 25, 119–125.
  • Longstaff, R. A.; Banks, H. J. Simulation of Temperature Fluctuations near the Surface of Grain Bulks. J. Stored Prod. Res. 1987, 23, 21–30. DOI:10.1016/0022-474X(87)90032-4.
  • White, G. G. Temperature Changes in Bulk Stored Wheat in Sub-Tropical Australia. J. Stored Prod. Res. 1988, 24, 5–11. DOI:10.1016/0022-474X(88)90003-3.
  • Chang, C. S.; Converse, H.; Steele, J. L. Modeling of Temperature of Grain during Storage with Aeration. Trans. ASAE. 1993, 36, 509–519.
  • Chang, C. S.; Converse, H.; Steele, J. L. Modeling of Moisture Content of Grain during Storage with Aeration. Trans. ASAE. 1994, 37, 1891–1898.
  • Casada, M. E.; Young, J. H. Model for Heat and Moisture Transfer in Arbitrarily Shaped Two-Dimensional Porous Media. Trans. ASAE. 1994, 37, 1927–1938.
  • Abe, T.; Basunia, M. Simulation of Temperature and Moisture Changes during Storage of Rough Rice in Cylindrical Bins Owing to Weather Variability. J. Agric. Eng. Res. 1996, 65, 223–233. DOI:10.1006/jaer.1996.0095.
  • Iguaz, A.; Arroqui, C.; Esnoz, A.; Vı́rseda, P. Modelling and Validation of Heat Transfer in Stored Rough Rice without Aeration. Biosyst. Eng. 2004, 88, 429–439. DOI:10.1016/j.biosystemseng.2004.03.013.
  • Iguaz, A.; Arroqui, C.; Esnoz, A.; Vı́rseda, P. Modelling and Simulation of Heat Transfer in Stored Rough Rice with Aeration. Biosyst. Eng. 2004, 89, 69–77. DOI:10.1016/j.biosystemseng.2004.05.001.
  • Novoa-Muñoz, F. Simulation of the Temperature of Barley during Its Storage in Cylindrical Silos. Math. Comput. Simul. 2019, 157, 1–14. DOI:10.1016/j.matcom.2018.09.004.
  • Alagusundaram, K.; Jayas, D. S.; White, N. D. G.; Muir, W. E. Three-Dimensional, Finite Element, Heat Transfer Model of Temperature Distribution in Grain Storage Bins. Trans. ASAE 1990, 33, 577–584.
  • Jia, C.; Sun, D.; Cao, C. Mathematical Simulation of Temperature Fields in a Stored Grain Bin Due to Internal Heat Generation. J. Food Eng. 2000, 43, 227–233. DOI:10.1016/S0260-8774(99)00156-9.
  • Montross, M. D.; Maier, D. E.; Haghighi, K. Development of a Finite-Element Stored Grain Ecosystem Model. Trans. ASAE. 2002, 45, 1455–1464.
  • Montross, M. D.; Maier, D. E.; Haghighi, K. Validation of a Finite Element Stored Grain Ecosystem Model. Trans. ASAE. 2002, 45, 1465–1474.
  • Jian, F.; Jayas, D. S.; White, N. D. G.; Alagusundaram, K. A Three-Dimensional, Asymmetric and Transient Model to Predict Grain Temperatures in Grain Stored Bins. Trans. ASAE. 2005, 48, 263–271.
  • Lawrence, J.; Maier, D. E.; Stroshine, R. L. Three-Dimensional Transient Heat, Mass, Momentum and Species Transfer in the Stored Grain Ecosystem: Part II. Model Validation. Trans. ASABE. 2013, 56, 189–201.
  • Khankari, K. K.; Morey, R. V.; Patankar, S. V. Mathematical Model for Moisture Diffusion in Stored Grain Due to Temperature Gradients. Trans. ASAE. 1994, 37, 1591–1604.
  • Khankari, K. K.; Morey, R. V.; Patankar, S. V. A Mathematical Model for Natural Convection Moisture Migration in Stored Grain. Trans. ASAE. 1995, 38, 1789–1804.
  • Rocha, K. S. O.; Martins, J. H.; Martins, M. A.; Saraz, J. A. O.; Filho, A. F. L. Three-Dimensional Modeling and Simulation of Heat and Mass Transfer Processes in Porous Media: An Application for Maize Stored in a Flat Bin. Dry. Technol. 2013, 31, 1099–1106. DOI:10.1080/07373937.2013.775145.
  • Liu, Q.; Yang, G.; Zhang, Q.; Ding, C. CFD Simulations of Aeration for Cooling Paddy Rice in a Warehouse-Type Storage Facility. Trans. ASABE. 2016, 59, 1873–1882. DOI:10.13031/trans.59.11478.
  • Fleurat-Lessard, F. Postharvest Operations for Quality Preservation of Stored Grain. In Encycl. Food Grains, 2nd ed.; Elsevier Ltd., 2016; Vol. 4, pp 117–125. DOI:10.1016/B978-0-12-394437-5.00189-3
  • Nguyen, T. V. Natural Convection Effects in Stored Grains- A Simulation Study. Dry. Technol. 1987, 5, 541–560. DOI:10.1080/07373938708916562.
  • Nishiyama, Y.; Cao, W.; Li, B. Grain Intermittent Drying Characteristics Analyzed by a Simplified Model. J. Food Eng. 2006, 76, 272–279. DOI:10.1016/j.jfoodeng.2005.04.059.
  • Huang, H.; Danao, M. G. C.; Rausch, K. D.; Singh, V. Diffusion and Production of Carbon Dioxide in Bulk Corn at Various Temperatures and Moisture Contents. J. Stored Prod. Res. 2013, 55, 21–26. DOI:10.1016/j.jspr.2013.07.002.
  • Navarro, S.; Noyes, R.; Casada, M.; Arthur, F. Grain Aeration. Stored Prod. Prot 2012, 121–134.
  • Jia, C.; Sun, D. W.; Cao, C. Finite Element Prediction of Transient Temperature Distribution in a Grain Storage Bin. J. Agric. Eng. Res. 2000, 76, 323–330. DOI:10.1006/jaer.2000.0533.
  • Jia, C.; Sun, D. W.; Cao, C. Computer Simulation of Temperature Changes in a Wheat Storage Bin. J. Stored Prod. Res. 2001, 37, 165–177. DOI:10.1016/S0022-474X(00)00017-5.
  • Jayas, D. S.; Alagusundaram, K.; Shunmugam, G.; Muir, W. R.; White, N. D. G. Simulated Temperatures of Stored Grain Bulks. Can. Agr. Eng. 1994, 36, 239–245.
  • Kanujoso, B.; Chung, D. S.; Song, A.; Erickson, L. E. Moisture Changes in Grain during Aeration under Warm Humid Conditions. Dry. Technol. 1995, 13, 197–214. DOI:10.1080/07373939508916949.
  • Istadi, I.; Sitompul, J. P. A Comprehensive Mathematical and Numerical Modeling of Deep-Bed Grain Drying. Dry. Technol. 2002, 20, 1123–1142. DOI:10.1081/DRT-120004043.
  • Sinicio, R.; Muir, W. E. Comparison of Mathematical Models to Simulate Aeration of Wheat Stored in Brazil. J. Agric. Eng. Res. 1996, 64, 119–130. DOI:10.1006/jaer.1996.0053.
  • Zare, D.; Jayas, D. S.; Singh, C. B. A Generalized Dimensionless Model for Deep Bed Drying of Paddy. Dry. Technol 2012, 30, 44–51. DOI:10.1080/07373937.2011.615429.
  • Hemis, M.; Singh, C. B.; Jayas, D. S.; Bettahar, A. Simulation of Coupled Heat and Mass Transfer in Granular Porous Media: Application to the Drying of Wheat. Dry. Technol. 2011, 29, 1267–1272. DOI:10.1080/07373937.2011.591712.
  • Zare, D.; Chen, G. Evaluation of a Simulation Model in Predicting the Drying Parameters for Deep-Bed Paddy Drying. Comput. Electron. Agric. 2009, 68, 78–87. DOI:10.1016/j.compag.2009.04.007.
  • Thompson, T. L. Temporary Storage of High-Moisture Shelled Corn Using Continuous Aeration. Trans. ASAE. 1972, 15, 333–337.
  • Thompson, T. L.; Peart, R. M.; and Foster, G. H. Mathematical Simulation of Corn Drying - A New Model. Trans. ASAE. 1968, 11, 0582–0586. DOI:10.13031/2013.39473.
  • Pierce, R. O.; Thompson, T. L. Management of Solar and Low-Temperature Grain Drying Systems — Part II : Layer Drying and Solution to the Overdrying Problem. Trans. ASAE. 1980, 23, 1024–1028.
  • Jansen, T. J. Solar Engineering Technology; Prentice Hall: Upper Saddle River, NJ, 1985.
  • Kreith, F. Principles of Heat Transfer; International Textbook Cooperation: Scranton, PA, 1965.
  • Kusuda, T.; Achenbach, P. R. Earth Temperature and Thermal Diffusivity at Selected Stations in the United States. National Bureau of Standards Gaithersburg, MD, 1965 (No. NBS-8972).
  • Thorpe, G. R. Modelling Ecosystems in Ventilated Conical Bottomed Farm Grain Silos. Ecol. Modell. 1997, 94, 255–286. DOI:10.1016/S0304-3800(96)00022-1.
  • Singh, A. K.; Thorpe, G. R. A Solution Procedure for Three-Dimensional Free Convective Flow in Peaked Bulks of Grain. J. Stored Prod. Res. 1993, 29, 221–235. DOI:10.1016/0022-474X(93)90004-N.
  • Singh, A. K.; Leonard, E.; Thorpe, G. R. A Solution Procedure for the Equations That Govern Three-Dimensional Free Convection in Bulk Stored Grains. Trans. ASAE. 1993, 36, 1159–1173.
  • Slattery, J. C. Momentum, Energy, and Mass Transfer in Continua.; McGraw-Hill Chemical Engineering Series: New York, 1972.
  • Samarskii, A. A.; Andreyev, V. B. On a High-Accuracy Difference Scheme for an Elliptic Equation with Several Space Variables. USSR Comput. Math. Math. Phys. 1963, 3, 1373–1382. DOI:10.1016/0041-5553(63)90245-3.
  • Lawrence, J.; Maier, D. E. Aeration Strategy Simulations for Wheat Storage in the Sub-Tropical Region of North India. Trans. ASABE. 2011, 54, 1395–1405. DOI:10.13031/2013.39008.
  • Rao, S. S. The Finite Element Method in Engineering: Pergamon International Library of Science, Technology, Engineering and Social Studies; Elsevier: New York, 2013.
  • Zienkiewicz, O. C.; Parekh, C. J. Transient Field Problems: Two‐Dimensional and Three‐Dimensional Analysis by Isoparametric Finite Elements. Int. J. Numer. Meth. Engng. 1970, 2, 61–71. DOI:10.1002/nme.1620020107.
  • Segerlind, L. J. Applied Finite Element Analysis (Vol. 316).; Wiley: New York, 1976.
  • Andrade, E. T.; Couto, S. M.; Queiroz, D. M.; Faroni, L. R.; de Sousa Damasceno, G. Three-Dimensional Simulation of the Temperature Variation in Corn Stored in Metallic Bin. ASAE Annual Meeting, Chicago, American Society of Agricultural and Biological Engineers.; 2002.
  • Gastón, A.; Abalone, R.; Cassinera, A.; Lara, M. A. Prediction of Temperature Distribution of Grain Stored in Silos. ASADES 2005, 9, 13–18.
  • Abalone, R.; Cassinera, A.; Lara, M. A. Modeling the Distribution of Temperature and Humidity in Grains Stored in Silos. Comput. Mech. 2006, 25, 233–247.
  • Carrera-Rodríguez, M.; Martínez-González, G. M.; Navarrete-Bolaños, J. L.; Botello-Álvarez, J. E.; Rico-Martínez, R.; Jiménez-Islas, H. Transient Numerical Study of the Effect of Ambient Temperature on 2-D Cereal Grain Storage in Cylindrical Silos. J. Stored Prod. Res. 2011, 47, 106–122. DOI:10.1016/j.jspr.2011.01.006.
  • Jian, F.; Jayas, D. S.; White, N. D. G. Temperature Fluctuations and Moisture Migration in Wheat Stored for 15 Months in a Metal Silo in Canada. J. Stored Prod. Res. 2009, 45, 82–90. DOI:10.1016/j.jspr.2008.09.004.
  • Khankari, K. K.; Morey, R. V.; Patankar, S. V. A Mathematical Model for Natural Convection Moisture Migration in Stored Grain. Trans. ASAE. 1995, 38, 1777–1787.
  • Wang, Y.; Duan, H.; Zhang, H.; Fang, Z. Modeling on Heat and Mass Transfer in Stored Wheat during Forced Cooling Ventilation. J. Therm. Sci. 2010, 19, 167–172. DOI:10.1007/s11630-010-0167-5.
  • Elgamal, R.; Ronsse, F.; Radwan, S. M.; Pieters, J. G. Coupling CFD and Diffusion Models for Analyzing the Convective Drying Behavior of a Single Rice Kernel. Dry. Technol. 2014, 32, 311–320. DOI:10.1080/07373937.2013.829088.
  • Khatchatourian, O. A.; Savicki, D. L. Mathematical Modelling of Airflow in an Aerated Soya Bean Store under Non-Uniform Conditions. Biosyst. Eng. 2004, 88, 201–211. DOI:10.1016/j.biosystemseng.2004.03.001.
  • Alabadan, B. a.; Oyewo, O. a. Temperature Variations within Wooden and Metal Grain Silos in the Tropics during Storage of Maize (Zea Mays). Leonardo J. Sci 2005, 6, 59–67.
  • Arthur, F. H.; Casada, M. E. Feasibility of Summer Aeration to Control Insects in Stored Wheat. Trans. ASAE. 2005, 21, 1027–1038.
  • Wu, W.; Ewing, D.; Ching, C. Y. The Effect of the Top and Bottom Wall Temperatures on the Laminar Natural Convection in an Air-Filled Square Cavity. Int. J. Heat Mass Transf. 2006, 49, 1999–2008. DOI:10.1016/j.ijheatmasstransfer.2005.11.027.
  • Khatchatourian, O. A.; de Oliveira, F. A. Mathematical Modelling of Airflow and Thermal State in Large Aerated Grain Storage. Biosyst. Eng. 2006, 95, 159–169. DOI:10.1016/j.biosystemseng.2006.05.009.
  • de Carvalho Lopes, D.; Martins, J. H.; de Castro Melo, E.; de Barros Monteiro, P. M. Aeration Simulation of Stored Grain under Variable Air Ambient Conditions. Postharvest Biol. Technol. 2006, 42, 115–120. DOI:10.1016/j.postharvbio.2006.05.007.
  • Srzednicki, G.; Singh, M.; Driscoll, R. H. Effects of Chilled Aeration on Grain Quality. In Proceedings of the 9th International Working Conference on Stored-Product Protection. 2006, 9, 1359.
  • Lopes, D.; de, C.; Martins, J. H.; Filho, A. F. L.; Melo, E.; de, C.; Monteiro, P. M.; de, B.; Queiroz, D. M. de. Aeration Strategy for Controlling Grain Storage Based on Simulation and on Real Data Acquisition. Comput. Electron. Agric. 2008, 63, 140–146. DOI:10.1016/j.compag.2008.02.002.
  • Ranjbaran, M.; Emadi, B.; Zare, D. CFD Simulation of Deep-Bed Paddy Drying Process and Performance. Dry. Technol. 2014, 32, 919–934. DOI:10.1080/07373937.2013.875561.
  • Ranjbaran, M.; Emadi, B. A Mathematical Model of Commodity Wet-Bulb Temperature (CWBT) for Grain Storage Applications. Biosyst. Eng. 2015, 139, 128–135. DOI:10.1016/j.biosystemseng.2015.09.002.
  • Boac, J. M.; Ambrose, R. P. K.; Casada, M. E.; Maghirang, R. G.; Maier, D. E. Applications of Discrete Element Method in Modeling of Grain Postharvest Operations. Food Eng. Rev. 2014, 6, 128–149. DOI:10.1007/s12393-014-9090-y.
  • Mostofinejad, D.; Reisi, M. A New DEM-Based Method to Predict Packing Density of Coarse Aggregates considering Their Grading and Shapes. Constr. Build. Mater. 2012, 35, 414–420. DOI:10.1016/j.conbuildmat.2012.04.008.
  • Markauskas, D.; Ramírez-Gómez, Á.; Kačianauskas, R.; Zdancevičius, E. Maize Grain Shape Approaches for DEM Modelling. Comput. Electron. Agric. 2015, 118, 247–258. DOI:10.1016/j.compag.2015.09.004.
  • Markauskas, D.; Kačianauskas, R. Investigation of Rice Grain Flow by Multi-Sphere Particle Model with Rolling Resistance. Granul. Matter. 2011, 13, 143–148. DOI:10.1007/s10035-010-0196-5.
  • Cundall, P. A.; Strack, O. D. A Discrete Numerical Model for Granular Assemblies. Geotechnique 1979, 29, 47–65. DOI:10.1680/geot.1979.29.1.47.
  • Boac, J. M.; Casada, M. E.; Maghirang, R. G. Material and Interaction Properties of Selected Grains and Oilseeds for Modeling Discrete Particles. Trans. ASABE. 2010, 53, 1201–1216.
  • González-Montellano, C.; Ayuga, F.; Ooi, J. Y. Discrete Element Modelling of Grain Flow in a Planar Silo: Influence of Simulation Parameters. Granul. Matter. 2011, 13, 149–158. DOI:10.1007/s10035-010-0204-9.
  • Ingles, M. E. A.; Casada, M. E.; Maghirang, R. G. Handling Effects on Commingling and Residual Grain in an Elevator. Trans. ASAE. 2003, 46, 1625–1631.
  • Iroba, K. L.; Mellmann, J.; Weigler, F.; Metzger, T.; Tsotsas, E. Particle Velocity Profiles and Residence Time Distribution in Mixed-Flow Grain Dryers. Granul. Matter. 2011, 13, 159–168. DOI:10.1007/s10035-010-0222-7.
  • Keppler, I.; Kocsis, L.; Oldal, I.; Farkas, I.; Csatar, A. Grain Velocity Distribution in a Mixed Flow Dryer. Adv. Powder Technol. 2012, 23, 824–832. DOI:10.1016/j.apt.2011.11.003.
  • Vargas, W. L.; McCarthy, J. J. Heat Conduction in Granular Materials. AIChE J. 2001, 47, 1052–1059. DOI:10.1002/aic.690470511.
  • Horabik, J.; Rusinek, R. Pressure Ratio of Cereal Grains Determined in a Uniaxial Compression Test. Int. Agrophysics. 2002, 16, 23–28.
  • Łukaszuk, J.; Molenda, M.; Horabik, J.; Montross, M. D. Variability of Pressure Drops in Grain Generated by Kernel Shape and Bedding Method. J. Stored Prod. Res. 2009, 45, 112–118. DOI:10.1016/j.jspr.2008.10.005.
  • Wiacek, J.; Molenda, M. Moisture-Dependent Physical Properties of Rapeseed – Experimental and DEM Modeling. Int. Agrophysics 2011, 25, 59–65.
  • Smith, E. A.; Sokhansanj, S. Natural Convection and Temperature of Stored Produce — a Theoretical Analysis. Can. Agr. Eng. 1990, 32, 91–97.
  • Vargas, W. L.; McCarthy, J. J. Conductivity of Granular Media with Stagnant Interstitial Fluids via Thermal Particle Dynamics Simulation. Int. J. Heat Mass Transf. 2002, 45, 4847–4856. DOI:10.1016/S0017-9310(02)00175-8.
  • Wu, H.; Gui, N.; Yang, X.; Tu, J.; Jiang, S. Effect of Scale on the Modeling of Radiation Heat Transfer in Packed Pebble Beds. Int. J. Heat Mass Transf. 2016, 101, 562–569. DOI:10.1016/j.ijheatmasstransfer.2016.05.090.
  • Gan, J.; Zhou, Z.; Yu, A. Particle Scale Study of Heat Transfer in Packed and Fluidized Beds of Ellipsoidal Particles. Chem. Eng. Sci. 2016, 144, 201–215. DOI:10.1016/j.ces.2016.01.041.
  • Asakuma, Y.; Honda, I.; Yamamoto, T. Numerical Analysis of Effective Thermal Conductivity with Thermal Conduction and Radiation in Packed Beds. Int. J. Heat Mass Transf. 2017, 114, 402–406. DOI:10.1016/j.ijheatmasstransfer.2017.06.083.
  • Feng, Y. T.; Han, K.; Owen, D. R. J. Discrete Thermal Element Modelling of Heat Conduction in Particle Systems: Pipe-Network Model and Transient Analysis. Powder Technol. 2009, 193, 248–256. DOI:10.1016/j.powtec.2009.03.001.
  • Gan, J.; Zhou, Z.; Yu, A. Effect of Particle Shape and Size on Effective Thermal Conductivity of Packed Beds. Powder Technol. 2017, 311, 157–166. DOI:10.1016/j.powtec.2017.01.024.
  • Gan, J. Q.; Zhou, Z. Y.; Yu, A. B. A GPU-Based DEM Approach for Modelling of Particulate Systems. Powder Technol. 2016, 301, 1172–1182. DOI:10.1016/j.powtec.2016.07.072.
  • Huang, K.; Xu, T.; Li, G.; Jiang, R. The Feasibility of DEM to Analyze the Temperature Field of Asphalt Mixture. Constr. Build. Mater. 2016, 106, 592–599. DOI:10.1016/j.conbuildmat.2015.12.192.
  • Kovalev, O. B.; Gusarov, A. V. Modeling of Granular Packed Beds, Their Statistical Analyses and Evaluation of Effective Thermal Conductivity. Int. J. Therm. Sci. 2017, 114, 327–341. DOI:10.1016/j.ijthermalsci.2017.01.003.
  • Terreros, I.; Iordanoff, I.; Charles, J. L. Simulation of Continuum Heat Conduction Using DEM Domains. Comput. Mater. Sci. 2013, 69, 46–52. DOI:10.1016/j.commatsci.2012.11.021.
  • Tomac, I.; Gutierrez, M. Formulation and Implementation of Coupled Forced Heat Convection and Heat Conduction in DEM. Acta Geotech. 2015, 10, 421–433. DOI:10.1007/s11440-015-0400-1.
  • Tsory, T.; Ben-Jacob, N.; Brosh, T.; Levy, A. Thermal DEM-CFD Modeling and Simulation of Heat Transfer through Packed Bed. Powder Technol 2013, 244, 52–60. DOI:10.1016/j.powtec.2013.04.013.
  • Haddad, H.; Guessasma, M.; Fortin, J. Heat Transfer by Conduction Using DEM-FEM Coupling Method. Comput. Mater. Sci 2014, 81, 339–347. DOI:10.1016/j.commatsci.2013.08.033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.