Publication Cover
Drying Technology
An International Journal
Volume 38, 2020 - Issue 13
737
Views
22
CrossRef citations to date
0
Altmetric
Articles

Effect of microwave and air-borne ultrasound-assisted air drying on drying kinetics and phytochemical properties of broccoli floret

, , , , , , & ORCID Icon show all
Pages 1733-1748 | Received 19 May 2019, Accepted 26 Aug 2019, Published online: 11 Sep 2019

References

  • Ferreira, S. S.; Passos, C. P.; Cardoso, S. M.; Wessel, D. F.; Coimbra, M. A. Microwave Assisted Dehydration of Broccoli by-Products and Simultaneous Extraction of Bioactive Compounds. Food Chem. 2018, 246, 386–393. DOI: 10.1016/j.foodchem.2017.11.053.
  • Thomas, M.; Badr, A.; Desjardins, Y.; Gosselin, A.; Angers, P. Characterization of Industrial Broccoli Discards (Brassica Oleracea Var. italica) for their Glucosinolate, Polyphenol and Flavonoid Contents Using UPLC MS/MS and Spectrophotometric Methods. Food Chem. 2018, 245, 1204–1211. DOI: 10.1016/j.foodchem.2017.11.021.
  • Reyes, A.; Mahn, A.; Guzmán, C.; Antoniz, D. Analysis of the Drying of Broccoli Florets in a Fluidized Pulsed Bed. Dry. Technol. 2012, 30, 1368–1376. DOI: 10.1080/07373937.2012.686548.
  • Sarvan, I.; Kramer, E.; Bouwmeester, H.; Dekker, M.; Verkerk, R. Sulforaphane Formation and Bioaccessibility are More Affected by Steaming Time than Meal Composition during in Vitro Digestion of Broccoli. Food Chem. 2017, 214, 580–586. DOI: 10.1016/j.foodchem.2016.07.111.
  • Moreira-Rodríguez, M.; Nair, V.; Benavides, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D. A. UVA, UVB Light, and Methyl Jasmonate, Alone or Combined, Redirect the Biosynthesis of Glucosinolates, Phenolics, Carotenoids, and Chlorophylls in Broccoli Sprouts. Int. J. Mol. Sci. 2017, 18, 2330. DOI: 10.3390/ijms18112330.
  • Drabińska, N.; Ciska, E.; Szmatowicz, B.; Krupa-Kozak, U. Broccoli by-Products Improve the Nutraceutical Potential of Gluten-Free Mini Sponge Cakes. Food Chem. 2018, 267, 170–177. DOI: 10.1016/j.foodchem.2017.08.119.
  • Jin, X.; Sman van der, R. G. M.; Boxtel van, A. J. B. Evaluation of the Free Volume Theory to Predict Moisture Transport and Quality Changes during Broccoli Drying. Dry. Technol. 2011, 29, 1963–1971. DOI: 10.1080/07373937.2011.596298.
  • Icier, F.; Colak, N.; Erbay, Z.; Kuzgunkaya, E. H.; Hepbasli, A. A Comparative Study on Exergetic Performance Assessment for Drying of Broccoli Florets in Three Different Drying Systems. Dry. Technol. 2010, 28, 193–204. DOI: 10.1080/07373930903524017.
  • Roknul Azam, S. M.; Zhang, M.; Law, C. L.; Mujumdar, A. S. Effects of Drying Methods on Quality Attributes of Peach (Prunus persica) Leather. Dry. Technol. 2019, 37, 341–351. DOI: 10.1080/07373937.2018.1454942.
  • Cao, X.; Zhang, M.; Fang, Z.; Mujumdar, A. S.; Jiang, H.; Qian, H.; Ai, H. Drying Kinetics and Product Quality of Green Soybean under Different Microwave Drying Methods. Dry. Technol. 2017, 35, 240–248. DOI: 10.1080/07373937.2016.1170698.
  • Tao, Y.; Han, M.; Gao, X.; Han, Y.; Show, P.-L.; Liu, C.; Ye, X.; Xie, G. Applications of Water Blanching, Surface Contacting Ultrasound-Assisted Air Drying, and Their Combination for Dehydration of White Cabbage: Drying Mechanism, Bioactive Profile, Color and Rehydration Property. Ultrason. Sonochem. 2019, 53, 192–201. DOI: 10.1016/j.ultsonch.2019.01.003.
  • Kroehnke, J.; Szadzińska, J.; Stasiak, M.; Radziejewska-Kubzdela, E.; Biegańska-Marecik, R.; Musielak, G. Ultrasound- and Microwave-Assisted Convective Drying of Carrots – Process Kinetics and Product’s Quality Analysis. Ultrason. Sonochem. 2018, 48, 249–258. DOI: 10.1016/j.ultsonch.2018.05.040.
  • M.; Salim, N. S.; Gariépy, Y.; Raghavan, V. Hot Air Drying and Microwave-Assisted Hot Air Drying of Broccoli Stalk Slices (Brassica oleracea L. Var. italica). J. Food Process. Preserv. 2017, 41, 1–9. DOI: 10.1111/jfpp.12905.
  • Tanongkankit, Y.; Chiewchan, N.; Devahastin, S. Effect of Processing on Antioxidants and Their Activity in Dietary Fiber Powder from Cabbage Outer Leaves. Dry. Technol. 2010, 28, 1063–1071. DOI: 10.1080/07373937.2010.505543.
  • Hennig, K.; Verkerk, R.; Dekker, M.; Bonnema, G. Quantitative Trait Loci Analysis of Non-Enzymatic Glucosinolate Degradation Rates in Brassica oleracea during Food Processing. Theor. Appl. Genet. 2013, 126, 2323–2334. DOI: 10.1007/s00122-013-2138-1.
  • Hanschen, F. S.; Lamy, E.; Schreiner, M.; Rohn, S. Reactivity and Stability of Glucosinolates and Their Breakdown Products in Foods. Angew. Chem. Int. Ed. 2014, 53, 11430–11450. DOI: 10.1002/anie.201402639.
  • MacLean, D. The Association of Official Analytical Chemists – Its International Activities. TrAC Trends Anal. Chem. 1982, 1, V–VII. DOI: 10.1016/0165-9936(82)80074-5.
  • Mason, T. J.; Lorimer, J. P.; Bates, D. M. Quantifying Sonochemistry: Casting Some Light on a “Black Art”. Ultrasonics. 1992, 30, 40–42. DOI: 10.1016/0041-624X(92)90030-P.
  • Karaaslan, S. Investigation of Drying Parameters of Broccoli during Fan-Assisted Microwave, Air and a Combined Microwave/Air Drying. J. Anim. Plant Sci. 2016, 26, 123–130.
  • Tao, Y.; Sun, D. W. Enhancement of Food Processes by Ultrasound: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 570–594. DOI: 10.1080/10408398.2012.667849.
  • Benseddik, A.; Azzi, A.; Zidoune, M. N.; Allaf, K. Mathematical Empirical Models of Thin-Layer Airflow Drying Kinetics of Pumpkin Slice. Eng. Agric. Environ. Food. 2018, 11, 220–231. DOI: 10.1016/j.eaef.2018.07.003.
  • Sun, Y.; Li, W. Effects the Mechanism of Micro-Vacuum Storage on Broccoli Chlorophyll Degradation and Builds Prediction Model of Chlorophyll Content Based on the Color Parameter Changes. Sci. Hortic. (Amsterdam). 2017, 224, 206–214. DOI: 10.1016/j.scienta.2017.06.040.
  • Song, J.; Wei, Q.; Wang, X.; Li, D.; Liu, C.; Zhang, M.; Meng, L. Degradation of Carotenoids in Dehydrated Pumpkins as Affected by Different Storage Conditions. Food Res. Int. 2018, 107, 130–136. DOI: 10.1016/j.foodres.2018.02.024.
  • Baenas, N.; Villaño, D.; García-Viguera, C.; Moreno, D. A. Optimizing Elicitation and Seed Priming to Enrich Broccoli and Radish Sprouts in Glucosinolates. Food Chem. 2016, 204, 314–319. DOI: 10.1016/j.foodchem.2016.02.144.
  • Guo, L.; Yang, R.; Wang, Z.; Guo, Q.; Gu, Z. Glucoraphanin, Sulforaphane and Myrosinase Activity in Germinating Broccoli Sprouts as Affected by Growth Temperature and Plant Organs. J. Funct. Foods. 2014, 9, 70–77. DOI: 10.1016/j.jff.2014.04.015.
  • Guo, L.; Yang, R.; Wang, Z.; Guo, Q.; Gu, Z. Effect of NaCl Stress on Health-Promoting Compounds and Antioxidant Activity in the Sprouts of Three Broccoli Cultivars. Int. J. Food Sci. Nutr. 2014, 65, 476–481. DOI: 10.3109/09637486.2013.860583.
  • Singleton, V. L.; Rossi, J. A.; Jr.; Rossi, J. A. Jr. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. DOI: 10.12691/ijebb-2-1-5.
  • Ling, B.; Ouyang, S.; Wang, S. Radio-Frequency Treatment for Stabilization of Wheat Germ: Storage Stability and Physicochemical Properties. Innov. Food Sci. Emerg. Technol. 2019, 52, 158–165. DOI: 10.1016/j.ifset.2018.12.002.
  • Tao, Y.; Wang, P.; Wang, Y.; Kadam, S. U.; Han, Y.; Wang, J.; Zhou, J. Power Ultrasound as a Pretreatment to Convective Drying of Mulberry (Morus alba L.) Leaves: Impact on Drying Kinetics and Selected Quality Properties. Ultrason. Sonochem. 2016, 31, 310–318. DOI: 10.1016/j.ultsonch.2016.01.012.
  • Szadzińska, J.; Kowalski, S. J.; Stasiak, M. Microwave and Ultrasound Enhancement of Convective Drying of Strawberries: Experimental and Modeling Efficiency. Int. J. Heat Mass Transf. 2016, 103, 1065–1074. DOI: 10.1016/j.ijheatmasstransfer.2016.08.001.
  • Szadzińska, J.; Łechtańska, J.; Pashminehazar, R.; Kharaghani, A.; Tsotsas, E. T. Microwave- and Ultrasound-Assisted Convective Drying of Raspberries: Drying Kinetics and Microstructural Changes. Dry. Technol. 2018, 37, 1–12. DOI: 10.1080/07373937.2018.1433199.
  • Szadzińska, J.; Łechtańska, J.; Kowalski, S. J.; Stasiak, M. The Effect of High Power Airborne Ultrasound and Microwaves on Convective Drying Effectiveness and Quality of Green Pepper. Ultrason. Sonochem. 2017, 34, 531–539. DOI: 10.1016/j.ultsonch.2016.06.030.
  • Zhou, J.; Yang, X.; Zhu, H.; Yuan, J.; Huang, K. Microwave Drying Process of Corns Based on Double-Porous Model. Dry. Technol. 2019, 37, 92–104. DOI: 10.1080/07373937.2018.1439952.
  • Cruz, L.; Clemente, G.; Mulet, A.; Ahmad-Qasem, M. H.; Barrajón-Catalán, E.; García-Pérez, J. V. Air-Borne Ultrasonic Application in the Drying of Grape Skin: Kinetic and Quality Considerations. J. Food Eng. 2016, 168, 251–258. DOI: 10.1016/j.jfoodeng.2015.08.001.
  • Balti, M. A.; Chahbani, A.; Fakhfakh, N.; El-Hatmi, H.; Zouari, N.; Kechaou, N.; Mabrouk, M. Microwave Drying Effects on Drying Kinetics, Bioactive Compounds and Antioxidant Activity of Green Peas (Pisum sativum L.). Food Biosci. 2018, 25, 32–38. DOI: 10.1016/j.fbio.2018.07.004.
  • Lv, W.; Zhang, M.; Wang, Y.; Adhikari, B. Online Measurement of Moisture Content, Moisture Distribution, and State of Water in Corn Kernels during Microwave Vacuum Drying Using Novel Smart NMR/MRI Detection System. Dry. Technol. 2018, 36, 1592–1602. DOI: 10.1080/07373937.2017.1418751.
  • Gallego-Juárez, J. A.; Riera, E.; de la Fuente Blanco, S.; RodríguezCorral, G.; Acosta-Aparicio, V. M.; Blanco, A. Application of High-Power Ultrasound for Dehydration of Vegetables: Processes and Devices. Dry. Technol. 2007, 25, 1893–1901. DOI: 10.1080/07373930701677371..
  • Ren, F.; Perussello, C. A.; Zhang, Z.; Kerry, J. P.; Tiwari, B. K. Impact of Ultrasound and Blanching on Functional Properties of Hot-Air Dried and Freeze Dried Onions. LWT – Food Sci. Technol. 2018, 87, 102–111. DOI: 10.1016/j.lwt.2017.08.053.
  • Kowalski, S. J.; Pawłowski, A.; Szadzińska, J.; Łechtańska, J.; Stasiak, M. High Power Airborne Ultrasound Assist in Combined Drying of Raspberries. Innov. Food Sci. Emerg. Technol. 2016, 34, 225–233. DOI: 10.1016/j.ifset.2016.02.006.
  • Fan, K.; Zhang, M.; Mujumdar, A. S. Application of Airborne Ultrasound in the Convective Drying of Fruits and Vegetables: A Review. Ultrason. Sonochem. 2017, 39, 47–57. DOI: 10.1016/j.ultsonch.2017.04.001.
  • Cui, Z. W.; Xu, S. Y.; Sun, D. W. Effect of Microwave-Vacuum Drying on the Carotenoids Retention of Carrot Slices and Chlorophyll Retention of Chinese Chive Leaves. Dry. Technol. 2004, 22, 563–575. DOI: 10.1081/DRT-120030001.
  • Park, Y. W. Effect of Freezing, Thawing, Drying, and Cooking on Carotene Retention in Carrots, Broccoli and Spinach. J. Food Sci. 1987, 52, 1022–1025. DOI: 10.1111/j.1365-2621.1987.tb14266.x.
  • Monego, D. L.; da Rosa, M. B.; do Nascimento, P. C. Applications of Computational Chemistry to the Study of the Antiradical Activity of Carotenoids: A Review. Food Chem. 2017, 217, 37–44. DOI: 10.1016/j.foodchem.2016.08.073.
  • Radošević, K.; Srček, V. G.; Bubalo, M. C.; Rimac Brnčić, S.; Takács, K.; Redovniković, I. R. Assessment of Glucosinolates, Antioxidative and Antiproliferative Activity of Broccoli and Collard Extracts. J. Food Compos. Anal. 2017, 61, 59–66. DOI: 10.1016/j.jfca.2017.02.001.
  • Lekcharoenkul, P.; Tanongkankit, Y.; Chiewchan, N.; Devahastin, S. Enhancement of Sulforaphane Content in Cabbage Outer Leaves Using Hybrid Drying Technique and Stepwise Change of Drying Temperature. J. Food Eng. 2014, 122, 56–61. DOI: 10.1016/j.jfoodeng.2013.08.037.
  • Park, S.; Arasu, M. V.; Lee, M. K.; Chun, J. H.; Seo, J. M.; Al-Dhabi, N. A.; Kim, S. J. Analysis and Metabolite Profiling of Glucosinolates, Anthocyanins and Free Amino Acids in Inbred Lines of Green and Red Cabbage (Brassica oleracea L.). LWT – Food Sci. Technol. 2014, 58, 203–213. DOI: 10.1016/j.lwt.2014.03.002.
  • Hennig, K.; de Vos, R. C. H.; Maliepaard, C.; Dekker, M.; Verkerk, R.; Bonnema, G. A Metabolomics Approach to Identify Factors Influencing Glucosinolate Thermal Degradation Rates in Brassica Vegetables. Food Chem. 2014, 155, 287–297. DOI: 10.1016/j.foodchem.2014.01.062.
  • Yábar, E.; Pedreschi, R.; Chirinos, R.; Campos, D. Glucosinolate Content and Myrosinase Activity Evolution in Three Maca (Lepidium meyenii Walp.) Ecotypes during Preharvest, Harvest and Postharvest Drying. Food Chem. 2011, 127, 1576–1583. DOI: 10.1016/j.foodchem.2011.02.021.
  • Verkerk, R.; Dekker, M.; Jongen, W. M. F. Post-Harvest Increase of Indolyl Glucosinolates in Response to Chopping and Storage of Brassica Vegetables. J. Sci. Food Agric. 2001, 81, 953–958. DOI: 10.1002/jsfa.854.
  • Zhang, Y.; Talalay, P. Anticarcinogenic Activities of Organic Isothiocyanates: Chemistry and Mechanisms. Cancer Res. 1994, 54, 1976s–1981s.
  • Jones, R. B.; Frisina, C. L.; Winkler, S.; Imsic, M.; Tomkins, R. B. Cooking Method Significantly Effects Glucosinolate Content and Sulforaphane Production in Broccoli Florets. Food Chem. 2010, 123, 237–242. DOI: 10.1016/j.foodchem.2010.04.016.
  • Verkerk, R.; Dekker, M. Glucosinolates and Myrosinase Activity in Red Cabbage (Brassica oleracea L. Var. Capatita f. rubra DC.) after Various Microwave Treatments. J. Agric. Food Chem. 2004, 52, 7318–7323. DOI: 10.1021/jf0493268.
  • Wang, G. C.; Farnham, M.; Jeffery, E. H. Impact of Thermal Processing on Sulforaphane Yield from Broccoli (Brassica oleracea L. ssp. italica). J. Agric. Food Chem. 2012, 60, 6743–6748. DOI: 10.1021/jf2050284.
  • Volden, J.; Borge, G. I. A.; Bengtsson, G. B.; Hansen, M.; Thygesen, I. E.; Wicklund, T. Effect of Thermal Treatment on Glucosinolates and Antioxidant-Related Parameters in Red Cabbage (Brassica oleracea L. ssp. capitata f. rubra). Food Chem. 2008, 109, 595–605. DOI: 10.1016/j.foodchem.2008.01.010.
  • Lin, T. M.; D. Durance, T.; Scaman, C. H. Characterization of Vacuum Microwave, Air and Freeze Dried Carrot Slices. Food Res. Int. 1998, 31, 111–117. DOI: 10.1016/S0963-9969(98)00070-2.
  • Böhm, V.; Kühnert, S.; Rohm, H.; Scholze, G. Improving the Nutritional Quality of Microwave-Vacuum Dried Strawberries: A Preliminary Study. Food Sci. Technol. Int. 2006, 12, 67–75. DOI: 10.1177/1082013206062136.
  • Frias, J.; Peñas, E.; Ullate, M.; Vidal-Valverde, C. Influence of Drying by Convective Air Dryer or Power Ultrasound on the Vitamin C and β-Carotene Content of Carrots. J. Agric. Food Chem. 2010, 58, 10539–10544. DOI: 10.1021/jf102797y.
  • Do Nascimento, E. M. G. C.; Mulet, A.; Ascheri, J. L. R.; De Carvalho, C. W. P.; Cárcel, J. A. Effects of High-Intensity Ultrasound on Drying Kinetics and Antioxidant Properties of Passion Fruit Peel. J. Food Eng. 2016, 170, 108–118. DOI: 10.1016/j.jfoodeng.2015.09.015.
  • Nowacka, M.; Wiktor, A.; Anuszewska, A.; Dadan, M.; Rybak, K.; Witrowa-Rajchert, D. The Application of Unconventional Technologies as Pulsed Electric Field, Ultrasound and Microwave-Vacuum Drying in the Production of Dried Cranberry Snacks. Ultrason. Sonochem. 2019, 56, 1–13. DOI: 10.1016/j.ultsonch.2019.03.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.