Publication Cover
Drying Technology
An International Journal
Volume 38, 2020 - Issue 16
320
Views
6
CrossRef citations to date
0
Altmetric
Articles

Prediction of effective moisture diffusivity in plant tissue food materials over extended moisture range

&
Pages 2202-2216 | Received 17 Jun 2019, Accepted 05 Nov 2019, Published online: 18 Nov 2019

References

  • Kiranoudis, C.; Maroulis, Z.; Marinos-Kouris, D. Model Selection in Air Drying of Foods. Dry. Technol. 1992, 10, 1097–1106. DOI: 10.1080/07373939208916497.
  • Saravacos, G. D.; Maroulis, Z. B. Transport Properties of Foods. CRC Press: Boca Raton, FL, 2001.
  • Rahman, M. S. Food Properties Handbook. CRC Press: Boca Raton, FL, 2009.
  • Joardder, M.; et al. Porosity: Establishing the Relationship Between Drying Parameters and Dried Food Quality. Springer: Heidelberg, 2016.
  • Datta, A. K. Porous Media Approaches to Studying Simultaneous Heat and Mass Transfer in Food Processes. I: Problem Formulations. J. Food Eng. 2007, 80, 80–95. DOI: 10.1016/j.jfoodeng.2006.05.013.
  • Fortes, M.; Okos, M. R. Drying Theories: Their Bases and Limitations as Applied to Foods and Grains. Adv. Dry. 1980, 1, 119–154.
  • Fanta, S. W.; Abera, M. K.; Ho, Q. T.; Verboven, P.; Carmeliet, J.; Nicolai, B. M. Microscale Modeling of Water Transport in Fruit Tissue. J. Food Eng. 2013, 118, 229–237. DOI: 10.1016/j.jfoodeng.2013.04.003.
  • Karunasena, H. C. P.; Brown, R. J.; Gu, Y. T.; Senadeera, W. Application of Meshfree Methods to Numerically Simulate Microscale Deformations of Different Plant Food Materials during Drying. J. Food Eng. 2015, 146, 209–226. DOI: 10.1016/j.jfoodeng.2014.09.011.
  • Karunasena, H. C. P.; Senadeera, W.; Brown, R. J.; Gu, Y. T. A Particle Based Model to Simulate Microscale Morphological Changes of Plant Tissues during Drying. Soft Matter. 2014, 10, 5249–5268. DOI: 10.1039/C4SM00526K.
  • Karunasena, H. C. P.; Senadeera, W.; Gu, Y. T.; Brown, R. J. A Coupled SPH-DEM Model for Micro-Scale Structural Deformations of Plant Cells During Drying. Appl. Math. Model. 2014, 38, 3781–3801. DOI: 10.1016/j.apm.2013.12.004.
  • Prawiranto, K.; Defraeye, T.; Derome, D.; Verboven, P.; Nicolai, B.; Carmeliet, J. New Insights into the Apple Fruit Dehydration Process at the Cellular Scale by 3D Continuum Modeling. J. Food Eng. 2018, 239, 52–63. DOI: 10.1016/j.jfoodeng.2018.06.023.
  • Rahman, M. S.; Al-Zakwani, I.; Guizani, N. Pore Formation in Apple during Air-Drying as a Function of Temperature: porosity and Pore-Size Distribution. J. Sci. Food Agric. 2005, 85, 979–989. DOI: 10.1002/jsfa.2056.
  • Kolhapure, N.; Venkatesh, K. An Unsaturated Flow of Moisture in Porous Hygroscopic Media at Low Moisture Contents. Chem. Eng. Sci. 1997, 52, 3383–3392. DOI: 10.1016/S0009-2509(97)00140-1.
  • Buckingham, E. Studies on the Movement of Soil Moisture. US Dept. Agic. Bur. Soils Bull. 1907, 38, 161
  • Lewis, W. K. The Rate of Drying of Solid Materials. J. Ind. Eng. Chem. 1921, 13, 427–432. DOI: 10.1021/ie50137a021.
  • Henry, P. Diffusion in Absorbing Media. Proc. R. Soc. Lond. A 1939, 171, 215–241.
  • Whitaker, S. Simultaneous Heat, Mass, and Momentum Transfer in Porous Media: A Theory of Drying, in Advances in Heat Transfer, Elsevier: New York, 1977; pp. 119–203.
  • De Vries, D. Simultaneous Transfer of Heat and Moisture in Porous Media. Trans. Agu. 1958, 39, 909–916. DOI: 10.1029/TR039i005p00909.
  • Philip, J.; De Vries, D. Moisture Movement in Porous Materials under Temperature Gradients. Trans. Agu. 1957, 38, 222–232. DOI: 10.1029/TR038i002p00222.
  • Luikov, A. Drying Theory. Moscow: Energy, 1968.
  • Geedipalli, S.; et al. Modeling Moisture Migration in Multi-domain Foods. in IFT Annual Meeting, 2002.
  • Mayor, L.; Sereno, A. Modelling Shrinkage during Convective Drying of Food Materials: A Review. J. Food Eng. 2004, 61, 373–386. DOI: 10.1016/S0260-8774(03)00144-4.
  • Chen, X. D. Moisture Diffusivity in Food and Biological Materials. Dry. Technol. 2007, 25, 1203–1213. DOI: 10.1080/07373930701438592.
  • Adamski, R.; Pakowski, Z. Identification of Effective Diffusivities in Anisotropic Material of Pine Wood during Drying with Superheated Steam. Dry. Technol. 2013, 31, 264–268. DOI: 10.1080/07373937.2012.717152.
  • Dehghannya, J.; Bozorghi, S.; Heshmati, M. K. Low Temperature Hot Air Drying of Potato Cubes Subjected to Osmotic Dehydration and Intermittent Microwave: drying Kinetics, Energy Consumption and Product Quality Indexes. Heat Mass Transf. 2018, 54, 929–954. DOI: 10.1007/s00231-017-2202-5.
  • Garbalińska, H.; Stasiak, M.; Bochenek, M.; Musielak, G. Assessment of a New Method for Determining the Relationship between Effective Diffusivity and Moisture Concentration – Exemplified by Autoclaved Aerated Concrete of Four Density Classes. Int. J. Heat Mass Transf. 2018, 124, 288–297. DOI: 10.1016/j.ijheatmasstransfer.2018.03.051.
  • Liu, J. Y. A New Method for Separating Diffusion Coefficient and Surface Emission Coefficient. Wood Fiber Sci. 1989, 21, 133–141.
  • Wang, Z. H.; Chen, G. Heat and Mass Transfer during Low Intensity Convection Drying. Chem. Eng. Sci. 1999, 54, 3899–3908. DOI: 10.1016/S0009-2509(98)00408-4.
  • Ni, H. Multiphase Moisture Transport in Porous Media Under Intensive Microwave Heating. Cornell University: Ithaca, NY, 1997.
  • Nobel, P. S. Physicochemical and Environmental Plant Physiology. Elsevier Science: Amsterdam, 2009.
  • Kuroki, S.; Oshita, S.; Sotome, I.; Kawagoe, Y.; Seo, Y. Visualization of 3-D Network of Gas-Filled Intercellular Spaces in Cucumber Fruit after Harvest. Postharvest Biol. Technol. 2004, 33, 255–262. DOI: 10.1016/j.postharvbio.2004.04.002.
  • Jarvis, M. C.; Briggs, S. P. H.; Knox, J. P. Intercellular Adhesion and Cell Separation in Plants. Plant. Cell Environ. 2003, 26, 977–989. DOI: 10.1046/j.1365-3040.2003.01034.x.
  • Michael, W.; Schultz, A.; Meshcheryakov, A. B.; Ehwald, R. Apoplasmic and Protoplasmic Water Transport Through the Parenchyma of the Potato Storage Organ. Plant Physiol. 1997, 115, 1089–1099. DOI: 10.1104/pp.115.3.1089.
  • Ilic, M.; Turner, I. W. Convective Drying of a Consolidated Slab of Wet Porous Material. Int. J. Heat Mass Transf. 1989, 32, 2351–2362. DOI: 10.1016/0017-9310(89)90196-8.
  • Nasrallah, S. B.; Perre, P. Detailed Study of a Model of Heat and Mass Transfer during Convective Drying of Porous Media. Int. J. Heat Mass Transf. 1988, 31, 957–967. DOI: 10.1016/0017-9310(88)90084-1.
  • Ratti, C. Shrinkage During Drying of Foodstuffs. J. Food Eng. 1994, 23, 91–105. DOI: 10.1016/0260-8774(94)90125-2.
  • Krokida, M. K.; Maroulis, Z. B. Effect of Drying Method on Shrinkage and Porosity. Dry. Technol. 1997, 15, 2441–2458. DOI: 10.1080/07373939708917369.
  • Krokida, M. K.; Oreopoulou, V.; Maroulis, Z. B. Effect of Frying Conditions on Shrinkage and Porosity of Fried Potatoes. J. Food Eng. 2000, 43, 147–154. DOI: 10.1016/S0260-8774(99)00143-0.
  • Rahman, M. S. A Theoretical Model to Predict the Formation of Pores in Foods during Drying. Int. J. Food Prop. 2003, 6, 61–72. DOI: 10.1081/JFP-120016624.
  • Alam, T.; Zhao, Y.; Takhar, P. S. Water and Oil Permeability of Poroelastic Potato Discs. Int. J. Food Prop. 2017, 20, 633–644. DOI: 10.1080/10942912.2016.1174710.
  • Vafai, K. Porous Media: applications in Biological Systems and Biotechnology. CRC Press: Tokyo, 2010.
  • Aprajeeta, J.; Gopirajah, R.; Anandharamakrishnan, C. Shrinkage and Porosity Effects on Heat and Mass Transfer during Potato Drying. J. Food Eng. 2015, 144, 119–128. DOI: 10.1016/j.jfoodeng.2014.08.004.
  • Comiti, J.; Renaud, M. A New Model for Determining Mean Structure Parameters of Fixed Beds from Pressure Drop Measurements: Application to Beds Packed with Parallelepipedal Particles. Chem. Eng. Sci. 1989, 44, 1539–1545. DOI: 10.1016/0009-2509(89)80031-4.
  • Mauret, E.; Renaud, M. Transport Phenomena in Multi-Particle Systems—I. Limits of Applicability of Capillary Model in High Voidage Beds-Application to Fixed Beds of Fibers and Fluidized Beds of Spheres. Chem. Eng. Sci. 1997, 52, 1807–1817. DOI: 10.1016/S0009-2509(96)00499-X.
  • Keey, R. Drying of Loose and Particulate Materials. CRC Press: New York, 1991.
  • Baini, R.; Langrish, T. An Assessment of the Mechanisms for Diffusion in the Drying of Bananas. J. Food Eng. 2008, 85, 201–214. DOI: 10.1016/j.jfoodeng.2007.06.035.
  • Datta, A. K.; van der Sman, R.; Gulati, T.; Warning, A. Soft Matter Approaches as Enablers for Food Macroscale Simulation. Faraday Discuss. 2012, 158, 435–459. DOI: 10.1039/c2fd20042b.
  • Iglesias, H. Handbook of Food Isotherms: Water Sorption Parameters for Food and Food Components. Elsevier, 2012.
  • Powles, J. G. On the Validity of the Kelvin Equation. J. Phys. A: Math. Gen. 1985, 18, 1551. DOI: 10.1088/0305-4470/18/9/034.
  • Leverett, M. Capillary Behavior in Porous Solids. Transactions of the AIME 1941, 142, 152–169. DOI: 10.2118/941152-G.
  • Ishakoglu, A.; Baytas, A. F. The Influence of Contact Angle on Capillary Pressure–Saturation Relations in a Porous Medium Including Various Liquids. Int. J. Eng. Sci. 2005, 43, 744–755. DOI: 10.1016/j.ijengsci.2004.05.007.
  • Si, C.; Lu, G.; Wang, X.-D.; Lee, D.-J. Gas Diffusion Layer Properties on the Performance of Proton Exchange Membrane Fuel Cell: pc–s Relationship with K-Function. Int. J. Hydrogen Energy 2016, 41, 21827–21837. DOI: 10.1016/j.ijhydene.2016.07.005.
  • Kang, W.; Chung, W. Y. Liquid Water Diffusivity of Wood from the Capillary Pressure-Moisture Relation. J. Wood Sci. 2009, 55, 91–99. DOI: 10.1007/s10086-008-1009-x.
  • Perre, P.; Moyne, C. Processes Related to Drying: Part II Use of the Same Model to Solve Transfers Both in Saturated and Unsaturated Porous Media. Dry. Technol. 1991, 9, 1153–1179. DOI: 10.1080/07373939108916747.
  • Liu, X.; Peng, F.; Lou, G.; Wen, Z. Liquid Water Transport Characteristics of Porous Diffusion Media in Polymer Electrolyte Membrane Fuel Cells: A Review. J. Power Sourc. 2015, 299, 85–96. DOI: 10.1016/j.jpowsour.2015.08.092.
  • Dadmohammadi, Y.; Misra, S.; Sondergeld, C.; Rai, C. Petrophysical Interpretation of Laboratory Pressure-Step-Decay Measurements on Ultra-Tight Rock Samples. Part 2–in the Presence of Gas Slippage, Transitional Flow, and Diffusion Mechanisms. J. Petrol. Sci. Eng. 2017, 158, 554–569. DOI: 10.1016/j.petrol.2017.08.077.
  • Moghaddam, R. N.; Jamiolahmady, M. Slip Flow in Porous Media. Fuel 2016, 173, 298–310. DOI: 10.1016/j.fuel.2016.01.057.
  • Freeman, C. M.; Moridis, G. J.; Blasingame, T. A. A Numerical Study of Microscale Flow Behavior in Tight Gas and Shale Gas Reservoir Systems. Transp. Porous Med. 2011, 90, 253. DOI: 10.1007/s11242-011-9761-6.
  • Boving, T. B.; Grathwohl, P. Tracer Diffusion Coefficients in Sedimentary Rocks: correlation to Porosity and Hydraulic Conductivity. J. Contam. Hydrol. 2001, 53, 85–100. DOI: 10.1016/S0169-7722(01)00138-3.
  • Grathwohl, P. Diffusion in Natural Porous Media: contaminant Transport, Sorption/Desorption and Dissolution Kinetics. Vol. 1. Springer: Berlin, 2012.
  • Fedec, P.; Ooraikul, B.; Hadziyev, D. Microstructure of Raw and Granulated Potatoes. Canad. Instit. Food Sci. Technol. J. [Journal De L Institut Canadien De Science Et Technologie Alimentaires] 1977, 10, 295–306. DOI: 10.1016/S0315-5463(77)73551-5.
  • Herremans, E.; Verboven, P.; Defraeye, T.; Rogge, S.; Ho, Q. T.; Hertog, M. L. A. T. M.; Verlinden, B. E.; Bongaers, E.; Wevers, M.; Nicolai, B. M.; et al. X-Ray CT for Quantitative Food Microstructure Engineering: The Apple Case. Nuclear Inst. Methods Phys. Res. B: Beam Inter. Mater. Atoms 2014, 324, 88–94. DOI: 10.1016/j.nimb.2013.07.035.
  • Zogzas, N. P.; Maroulis, Z. B.; Marinos-Kouris, D. Moisture Diffusivity Data Compilation in Foodstuffs. Dry. Technol. 1996, 14, 2225–2253. DOI: 10.1080/07373939608917205.
  • Udell, K. S. Heat Transfer in Porous Media considering Phase Change and Capillarity—the Heat Pipe Effect. Int. J. Heat Mass Transf. 1985, 28, 485–495. DOI: 10.1016/0017-9310(85)90082-1.
  • Dadmohammadi, Y.; Misra, S.; Sondergeld, C. H.; Rai, C. S. Petrophysical Interpretation of Laboratory Pressure-Step-Decay Measurements on Ultra-Tight Rock Samples. Part 1-in the Presence of Only Gas Slippage. J. Petrol. Sci. Eng. 2017, 156, 381–395. DOI: 10.1016/j.petrol.2017.06.013.
  • Ye, Z.; Chen, D.; Pan, Z. A Unified Method to Evaluate Shale Gas Flow Behaviours in Different Flow Regions. J. Nat. Gas Sci. Eng. 2015, 26, 205–215. DOI: 10.1016/j.jngse.2015.05.032.
  • Al-Shemmeri, T. Engineering Fluid Mechanics. Bookboon: London, 2012.
  • Zogzas, N.; Maroulis, Z.; Marinos-Kouris, D. Densities, Shrinkage and Porosity of Some Vegetables during Air Drying. Dry. Technol. 1994, 12, 1653–1666. DOI: 10.1080/07373939408962191.
  • Boukouvalas, C. J.; Bisharat, G.; Krokida, M. Structural Properties of Vegetables during Air Drying. Int. J. Food Prop. 2010, 13, 1393–1404. DOI: 10.1080/10942910903079267.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.