Publication Cover
Drying Technology
An International Journal
Volume 39, 2021 - Issue 10
469
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Thermal performance and economic analysis of an indirect solar dryer of wood integrated with packed-bed thermal energy storage system: A case study of solar thermal applications

&
Pages 1371-1388 | Received 16 Sep 2019, Accepted 29 Mar 2020, Published online: 11 Apr 2020

References

  • Aghbashlo, M.; Mobli, H.; Rafiee, S.; Madadlou, A. A Review on Exergy Analysis of Drying Processes and Systems. Renew. Sustain. Energy Rev. 2013, 22, 1–22. DOI: 10.1016/j.rser.2013.01.015.
  • Hasan, M.; Alan, T.; Langrish, G. Time-Valued Net Energy Analysis of Solar Kilns for Wood Drying: A Solar Thermal Application. Energy 2016, 96, 415–426. DOI: 10.1016/j.energy.2015.11.081.
  • Zhao, J.; Fu, Z.; Jia, X.; Cai, Y. Modeling Conventional Drying of Wood: Inclusion of a Moving Evaporation Interface. Dry. Technol. 2016, 34, 530–538. DOI: 10.1080/07373937.2015.1060999.
  • Lamrani, B.; Khouya, A.; Draoui, A. Energy and Environmental Analysis of an Indirect Hybrid Solar Dryer of Wood Using TRNSYS Software. Sol. Energy 2019, 183, 132–145. DOI: 10.1016/j.solener.2019.03.014.
  • Sattar, M. A. Solar Drying of Timber—A Review. Holz Als Roh Und. Werkstoff 1993, 51, 409–416. DOI: 10.1007/BF02628239.
  • Haque, M. N.; Langrish, T. A. G. Assessment of the Actual Performance of an Industrial Solar Kiln for Drying Timber. Dry. Technol. 2005, 23, 1541–1553. DOI: 10.1081/DRT-200063544.
  • Bentayeb, F.; Bekkioui, N.; Zeghmati, B. Modelling and Simulation of a Wood Solar Dryer in a Moroccan Climate. Renew. Energy 2008, 33, 501–506. DOI: 10.1016/j.renene.2007.03.030.
  • Tschernitz, J. L.; Simpson, W. T. Solar-Heated, Forced-Air, Lumber Dryer for Tropical Latitudes. Sol. Energy 1979, 22, 563–566. DOI: 10.1016/0038-092X(79)90029-X.
  • Chen, P. Y. S.; Rosen, H. N.; Service, F.; Helmer, W. A. Experimental Solar-Dehumidifier Kiln for Lumber Drying. For. Prod. J. 1982, 9, 35–41.
  • Sattar, M. A. Major Energy Saving by Use of Solar Timber Drying in Developing Countries. Renew. Energy 1994, 5, 457–464. DOI: 10.1016/0960-1481(94)90414-6.
  • Simo-Tagne, M.; Ndukwu, M. C.; Zoulalian, A.; Bennamoun, L.; Kifani-Sahban, F.; Rogaume, Y. Numerical Analysis and Validation of a Natural Convection Mix-Mode Solar Dryer for Drying Red Chilli under Variable Conditions. Renew. Energy 2020, 151, 659–673. DOI: 10.1016/j.renene.2019.11.055.
  • Ndukwu, M. C.; Simo-Tagne, M.; Abam, F. I.; Onwuka, O. S.; Prince, S.; Bennamoun, L. Exergetic Sustainability and Economic Analysis of Hybrid Solar-Biomass Dryer Integrated with Copper Tubing as Heat Exchanger. Heliyon 2020, 6, e03401. DOI: 10.1016/j.heliyon.2020.e03401.
  • Atalay, H. Performance Analysis of a Solar Dryer Integrated with the Packed Bed Thermal Energy Storage (TES) System. Energy 2019, 172, 1037–1052. DOI: 10.1016/j.energy.2019.02.023.
  • Lamrani, B.; Khouya, A.; Draoui, A. Numerical Modelling of a Latent Heat Thermal Energy Storage System Applied to Solar Drying Techniques. Int. J. Energy Environ. Econ. 2017, 25, 1–22.
  • Mawire, A.; McPherson, M.; Va. den Heetkamp, R. R. J.; Mlatho, S. J. P. Simulated Performance of Storage Materials for Pebble Bed Thermal Energy Storage (TES) Systems. Appl. Energy 2009, 86, 1246–1252. DOI: 10.1016/j.apenergy.2008.09.009.
  • Singh, H.; Saini, R. P.; Saini, J. S. A Review on Packed Bed Solar Energy Storage Systems. Renew. Sustain. Energy Rev. 2010, 14, 1059–1069. DOI: 10.1016/j.rser.2009.10.022.
  • Coutier, J. P.; Farber, E. A. Two Applications of a Numerical Approach of Heat Transfer Process within Rock Beds. Sol. Energy 1982, 29, 451–462. DOI: 10.1016/0038-092X(82)90053-6.
  • Read, W. R.; Choda, A.; Copper, P. I. A Solar Timber Kiln. Sol. Energy 1974, 15, 309–316. DOI: 10.1016/0038-092X(74)90021-8.
  • Salem, T.; Perré, P.; Bouali, A.; Mougel, E.; Rémond, R. Experimental and Numerical Investigation of Intermittent Drying of Timber. Dry. Technol. 2017, 35, 593–605. DOI: 10.1080/07373937.2016.1195842.
  • Chen, P. Y. S., & Helmer, W. A. Drying Yellow-Poplar in a Solar-Dehumidifier Kiln with Heat Storage and Heat Recovery Systems. Carbondale, 1984.
  • Yand, K. Solar Kiln Performance at a High Latitude, 48 N, For. Prod. J. 1980, 30, 37–40.
  • Khouya, A. Contribution aux études expérimentale et numérique du processus du séchage du bois. Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Morocco, 2008.
  • Luna, D.; Nadeau, J. P.; Jannot, Y. Model and Simulation of a Solar Kiln with Energy Storage. Renew. Energy 2010, 35, 2533–2542. DOI: 10.1016/j.renene.2010.03.024.
  • Khouya, A.; Draoui, A. Computational Drying Model for Solar Kiln with Latent Heat Energy Storage: Case Studies of Thermal Application. Renew. Energy 2019, 130, 796–813. DOI: 10.1016/j.renene.2018.06.090.
  • Chi, X.; Xu, J.; Han, G.; Cheng, W.; Liu, B.; Du, X.; Chen, H. Selection of Cross-Seasonal Heat Collection/Storage Media for Wood Solar Drying. Dry. Technol. 2019, 0, 1–10. 10.1080/07373937.2019.1685539.
  • Ugwu, S. N.; Ugwuishiwu, B. O.; Ekechukwu, O. V.; Njoku, H.; Ani, A. O. Design, Construction, and Evaluation of a Mixed Mode Solar Kiln with Black-Painted Pebble Bed for Timber Seasoning in a Tropical Setting. Renew. Sustain. Energy Rev. 2015, 41, 1404–1412. DOI: 10.1016/j.rser.2014.09.033.
  • Kumar, S.; Kishankumar, V. S. Thermal Energy Storage for a Solar Wood Drying Kiln: Estimation of Energy Requirement. J. Indian Acad. Wood Sci. 2016, 13, 33–37. 10.1007/s13196-016-0162-x.
  • Kousksou, T.; Allouhi, A.; Belattar, M.; Jamil, A.; Rhafiki, T. E.; Zeraouli, Y. Morocco’s Strategy for Energy Security and Low-Carbon Growth. Energy 2015, 84, 98–105. DOI: 10.1016/j.energy.2015.02.048.
  • Fudholi, A.; Sopian, K. A Review of Solar Air fl at Plate Collector for Drying Application. Renew. Sustain. Energy Rev. 2019, 102, 333–345. DOI: 10.1016/j.rser.2018.12.032.
  • Lamrani, B.; Khouya, A.; Zeghmati, B.; Draoui, A. Mathematical Modeling and Numerical Simulation of a Parabolic Trough Collector: A Case Study in Thermal Engineering. Therm. Sci. Eng. Prog. 2018, 8, 47–54. DOI: 10.1016/j.tsep.2018.07.015.
  • Lamrani, B.; Khouya, A.; Draoui, A. 2018 Thermal Performance of a Parabolic Trough Collector under Different Climatic Zones in Morocco. In: AIP Conf. Proc., Ouarzazate, Morocco. DOI: 10.1063/1.5084980.
  • Lamrani, B. Contribution à la modélisation et à la simulation numérique d’un séchoir solaire hybride à bois avec stockage de chaleur dans un matériau à changement de phase. Ph.D. Thesis, Abdelmalek Essaadi University, Tangier, Morocco, 2019.
  • Simo-Tagne, M.; Bonoma, B.; Bennamoun, L.; Monkam, L.; Léonard, A.; Zoulalian, A.; Rogaume, Y. Modeling of Coupled Heat and Mass Transfer during Drying of Ebony Wood Using Indirect Natural Convection Solar Dryer. Dry. Technol. 2019, 37, 1863–1878. DOI: 10.1080/07373937.2018.1544144.
  • Duffie, J. A.; Beckman, W. A.; Worek, W. M. Solar Engineering of Thermal Processes, 4th ed. John Wiley & Sons, Inc.: Hoboken, NJ, 2003.
  • Kalogirou, S. The Potential of Solar Industrial Process Heat Applications. Appl. Energy 2003, 76, 337–361. DOI: 10.1016/S0306-2619(02)00176-9.
  • TRNSYS, Mathematical Reference for TRNSYS 18, 2018.
  • Hughes, P. J.; Klein, S. A.; Close, D. J. Packed Bed Thermal Storage Models for Solar Air Heating and Cooling Systems. J. Heat Transfer 1976, 98, 336–338. DOI: 10.1115/1.3450552.
  • Simo-Tagne, M.; Zoulalian, A.; Rémond, R.; Rogaume, Y. Mathematical Modelling and Numerical Simulation of a Simple Solar Dryer for Tropical Wood Using a Collector. Appl. Therm. Eng. 2018, 131, 356–369. DOI: 10.1016/j.applthermaleng.2017.12.014.
  • Merakeb, S.; Dubois, F.; Petit, C. Modélisation des Hystérésis de Sorption dans les Matériaux Hygroscopiques. Comptes Rendus Mec. 2009, 337, 34–39. DOI: 10.1016/j.crme.2009.01.001.
  • Nadeau, J.-P.; Puiggali, J.-R. Séchage des Processus Physiques aux Procédés Industriels, Tec & Doc Lavoisier: Londres; Paris; New York, 1995.
  • Awadalla, H. S. F.; El-Dib, A. F.; Mohamad, M. A.; Reuss, M.; Hussein, H. M. S. Mathematical Modelling and Experimental Verification of Wood Drying Process. Energy Convers. Manag. 2004, 45, 197–207. DOI: 10.1016/S0196-8904(03)00146-8.
  • Solar Energy Laboratory. TRNSYS Program Manual, 1996.
  • Khater, H. A.; Helwa, N. H.; Enayet, M. M.; Hashish, M. I. Optimization of Solar Kiln for Drying Wood. Dry. Technol. 2004, 22, 703–717. DOI: 10.1081/DRT-120034258.
  • Hage, H. E.; Herez, A.; Ramadan, M.; Bazzi, H.; Khaled, M. An Investigation on Solar Drying: A Review with Economic and Environmental Assessment. Energy 2018, 157, 815–829. DOI: 10.1016/j.energy.2018.05.197.
  • Belessiotis, V.; Delyannis, E. Solar Drying. Sol. Energy 2011, 85, 1665–1691. DOI: 10.1016/j.solener.2009.10.001.
  • Bauer, K. Development and Optimisation of a Low-Temperature Drying Schedule for Eucalyptus grandis (Hill) ex Maiden in a Solar-Assisted Timber Dryer. Ph.D. Thesis, Institut für Agrartechnikin den Tropen und Subtropen, Universität Hohenheim, Germany, 2003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.