Publication Cover
Drying Technology
An International Journal
Volume 39, 2021 - Issue 10
318
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Implication of ultrasonic power and frequency for the ultrasonic vacuum drying of honey

, , & ORCID Icon
Pages 1389-1400 | Received 16 Sep 2019, Accepted 29 Mar 2020, Published online: 16 Apr 2020

References

  • Abu-Jdayil, B.; Ghzawi, A. M.; Al-Malah, K. I. M.; Zaitoun, S. Heat Effect on Rheology of Light- and Dark-Colored Honey. J. Food Eng. 2002, 51, 33–38. DOI: 10.1016/S0260-8774(01)00034-6.
  • Saravana Kumar, J.; Mandal, M. Rheology and Thermal Properties of Marketed Indian Honey. Nutr. Food Sci. 2009, 39, 111–117. DOI: 10.1108/00346650910943217.
  • Witczak, M.; Juszczak, L.; Gałkowska, D. Non-Newtonian Behaviour of Heather Honey. J. Food Eng. 2011, 104, 532–537. DOI: 10.1016/j.jfoodeng.2011.01.013.
  • Doner, L. W.; Hicks, K. B. Lactose and the Sugars of Honey and Maple: Reactions, Properties, and Analysis. In Food Carbohydrates; Lineback, D. R., Inglett, G. E., Eds.; AVI Publishing Company: West Port, CT, 1982; pp 74–112.
  • Cui, Z. W.; Sun, L. J.; Chen, W.; Sun, D. W. Preparation of Dry Honey by Microwave–Vacuum Drying. J. Food Eng. 2008, 84, 582–590. DOI: 10.1016/j.jfoodeng.2007.06.027.
  • White, J. W. H. Jr. The Hive and the Honey Bee; Dandant & Sons, Ed.; Dandant & Sons: Hamilton, IL, 1999; pp 491–530.
  • Mason, T. J. P. Ultrasound in Food Processing—The Way Forward. In Ultrasounds in Food Processing; Povey, M. J. W., Mason, T. J., Eds.; Blackie Academic and Professional: Glasgow, 1998; pp 104–124.
  • Azoubel, P. M.; Baima, M. D. A. M.; da Rocha Amorim, M.; Oliveira, S. S. B. Effect of Ultrasound on Banana cv Pacovan Drying Kinetics. J. Food Eng. 2010, 97, 194–198. DOI: 10.1016/j.jfoodeng.2009.10.009.
  • Fernandes, F. A. N.; Gallão, M. I.; Rodrigues, S. Effect of Osmotic Dehydration and Ultrasound as Pre-Treatment on Cell Structure: Melon Dehydration. LWT—Food Sci. Technol. 2008, 41, 604–610. DOI: 10.1016/j.lwt.2007.05.007.
  • Aghbashlo, M.; Mobli, H.; Rafiee, S.; Madadlou, A. A Review on Exergy Analysis of Drying Processes and Systems. Renew. Sustain. Energy Rev. 2013, 22, 1–22. DOI: 10.1016/j.rser.2013.01.015.
  • Fuente-Blanco, S. D. L.; Sarabia, R. F. D.; Acosta-Aparicio, V. M.; Blanco-Blanco, A.; Gallego-Juárez, J. A. Food Drying Process by Power Ultrasound. Ultrasonics 2006, 44, e523–e527. DOI: 10.1016/j.ultras.2006.05.181.
  • Başlar, M.; Kılıçlı, M.; Toker, O. S.; Sağdıç, O.; Arici, M. Ultrasonic Vacuum Drying Technique as a Novel Process for Shortening the Drying Period for Beef and Chicken Meats. Innov. Food Sci. Emerg. Technol. 2014, 26, 182–190. DOI: 10.1016/j.ifset.2014.06.008.
  • Başlar, M.; Kılıçlı, M.; Yalınkılıç, B. Dehydration Kinetics of Salmon and Trout Fillets Using Ultrasonic Vacuum Drying as a Novel Technique. Ultrason. Sonochem. 2015, 27, 495–502. DOI: 10.1016/j.ultsonch.2015.06.018.
  • Tekin, Z. H.; Başlar, M.; Karasu, S.; Kilicli, M. Dehydration of Green Beans Using Ultrasound-Assisted Vacuum Drying as a Novel Technique: Drying Kinetics and Quality Parameters. J. Food Process. Preserv. 2017, 41, e13227. DOI: 10.1111/jfpp.13227.
  • Decareau, R. V. Microwaves in the Food Processing Industry. Food Science & Technology; Academic Press: New York, 1985.
  • Durance, T. D.; Wang, J. H. Energy Consumption, Density, and Rehydration Rate of Vacuum Microwave- and Hot-Air Convection-Dehydrated Tomatoes. J. Food Sci. 2002, 67, 2212–2216. DOI: 10.1111/j.1365-2621.2002.tb09529.x.
  • Otero, L.; Préstamo, G. Effects of Pressure Processing on Strawberry Studied by Nuclear Magnetic Resonance. Innov. Food Sci. Emerg. Technol. 2009, 10, 434–440. DOI: 10.1016/j.ifset.2009.04.004.
  • Ciampa, A.; Dell’Abate, Masetti, M. T.; Masetti, O.; Valentini, M.; Sequi, P. Seasonal Chemical–Physical Changes of PGI Pachino Cherry Tomatoes Detected by Magnetic Resonance Imaging (MRI). Food Chem. 2010, 122, 1253–1260. DOI: 10.1016/j.foodchem.2010.03.078.
  • Tian, Y.; Zhao, Y.; Huang, J.; Zeng, H.; Zheng, B. Effects of Different Drying Methods on the Product Quality and Volatile Compounds of Whole Shiitake Mushrooms. Food Chem. 2016, 197, 714–722. DOI: 10.1016/j.foodchem.2015.11.029.
  • Xu, F.; Jin, X.; Zhang, L.; Chen, X. D. Investigation on Water Status and Distribution in Broccoli and the Effects of Drying on Water Status Using NMR and MRI Methods. Food Res. Int. 2017, 96, 191–197. DOI: 10.1016/j.foodres.2017.03.041.
  • AOAC. Official Methods of Analysis of AOAC International, 16th ed.; Association of Official Analytical Chemists: Washington, DC, 1995.
  • Liu, S.; Zhu, W.; Bai, X.; You, T.; Yan, J. Effect of Ultrasonic Energy Density on Moisture Transfer during Ultrasound Enhanced Vacuum Drying of Honey. Food Meas. 2019, 13, 559–980. DOI: 10.1007/s11694-018-9969-z.
  • Jamradloedluk, J.; Nathakaranakule, A.; Soponronnarit, S.; Prachayawarakorn, S. Influences of Drying Medium and Temperature on Drying Kinetics and Quality Attributes of Durian Chip. J. Food Eng. 2007, 78, 198–205. DOI: 10.1016/j.jfoodeng.2005.09.017.
  • Mujaffar, S.; Sankat, C. K. Modeling the Drying Behavior of Unsalted and Salted Catfish (Arius sp.) Slabs. J. Food Process. Preserv. 2015, 39, 1385–1398. DOI: 10.1111/jfpp.12357.
  • García-Pérez, J. V.; Cárcel, J. A.; Benedito, J.; Mulet, A. Power Ultrasound Mass Transfer Enhancement in Food Drying. Food Bioprod. Process. 2007, 85, 247–254. DOI: 10.1205/fbp07010.
  • Soria, A. C.; Villamiel, M. Effect of Ultrasound on the Technological Properties and Bioactivity of Food: A Review. Trends Food Sci. Technol. 2010, 21, 323–331. DOI: 10.1016/j.tifs.2010.04.003.
  • Leighton, T. G. The Principles of Cavitation. In Ultrasound in Food Processing; Povey, M. J. W., Mason, T. J., Eds.; Chapman & Hall: London, 1998; pp 151–182.
  • Cárcel, J. A.; García-Pérez, J. V.; Benedito, J.; Mulet, A. Food Process Innovation through New Technologies: Use of Ultrasound. J. Food Eng. 2012, 110, 200–207. DOI: 10.1016/j.jfoodeng.2011.05.038.
  • Ren, Z.; Bian, X.; Lin, L.; Bai, Y.; Wang, W. Viscosity and Melt Fragility in Honey–Water Mixtures. J. Food Eng. 2010, 100, 705–710. DOI: 10.1016/j.jfoodeng.2010.06.004.
  • Ren, X.; Ma, H.; Mao, S.; Zhou, H. Effects of Sweeping Frequency Ultrasound Treatment on Enzymatic Preparations of Ace-Inhibitory Peptides from Zein. Eur. Food Res. Technol. 2014, 238, 435–442. DOI: 10.1007/s00217-013-2118-3.
  • Vieira da Silva Júnior, E.; Lins de Melo, L.; Batista de Medeiros, R. A.; Pimenta Barros, Z. M.; Azoubel, P. M. Influence of Ultrasound and Vacuum Assisted Drying on Papaya Quality Parameters. LWT—Food Sci. Technol. 2018, 97, 317–322. DOI: 10.1016/j.lwt.2018.07.017.
  • Minaei, S.; Motevali, A.; Ahmadi, E.; Azizi, M. H. Mathematical Models of Drying Pomegranate Arils in Vacuum and Microwave Dryers. J. Agric. Sci. Technol. 2012, 14, 311–325. DOI: 10.5423/PPJ.DR.01.2011.0008.
  • Zhang L.; Mccarthy M. J. Assessment of Pomegranate Postharvest Quality Using Nuclear Magnetic Resonance. Postharvest Biol. Technol. 2013, 77, 59–66. DOI: 10.1016/j.postharvbio.2012.11.006.
  • Song, Y.; Zang, X.; Kamal, T.; Bi, J.; Cong, S.; Zhu, B.; Tan, M. Real-Time Detection of Water Dynamics in Abalone (Haliotis discus hannai Ino) during Drying and Rehydration Processes Assessed by LF-NMR and MRI. Dry. Technol. 2018, 36, 72–83. DOI: 10.1080/07373937.2017.1300807.
  • Hills, B.; Benamira, S.; Marigheto, N.; Wright, K. T1-T2 Correlation Analysis of Complex Foods. Appl. Magn. Reson. 2004, 26, 543–560. DOI: 10.1007/BF03166582.
  • Gallego-Juárez, J. A.; Riera, E.; de la Fuente Blanco, S.; Rodríguez-Corral, G.; Acosta-Aparicio, V. M.; Blanco, A. Application of High-Power Ultrasound for Dehydration of Vegetables: Processes and Devices. Dry. Technol. 2007, 25, 1893–1901. DOI: 10.1080/07373930701677371.
  • Xiao, Q. Drying Process of Sodium Alginate Edible Films Forming Solutions Studied by LF-NMR. Food Chem. 2018, 250, 83–88. DOI: 10.1016/j.foodchem.2018.01.043.
  • Bhandari, B. R.; Howes, T. Implication of Glass Transition for the Drying and Stability of Dried Foods. J. Food Eng. 1999, 40, 71–79. DOI: 10.1016/S0260-8774(99)00039-4.
  • Ahmed, J.; Prabhu, S. T.; Raghavan, G. S. V.; Ngadi, M. Physico-Chemical, Rheological, Calorimetric and Dielectric Behavior of Selected Indian Honey. J. Food Eng. 2007, 79, 1207–1213. DOI: 10.1016/s0260-8774(99)00039-4.
  • Roos, Y. H.; Karel, M.; Kokini, J. L. Glass Transitions in Low Moisture and Frozen Foods: Effect on Shelf Life and Quality. Food Technol. 1996, 11, 95–108.
  • Jouppila, K.; Roos, Y. H. Glass Transitions and Crystallization in Milk Powders. J. Dairy Sci. 1994, 77, 2907–2915. DOI: 10.3168/jds.S0022-0302(94)77231-3.
  • Garcia-Perez, J. V.; Ortuño, C.; Puig, A.; Carcel, J. A.; Perez-Munuera, I. Enhancement of Water Transport and Microstructural Changes Induced by High-Intensity Ultrasound Application on Orange Peel Drying. Food Bioprocess Technol. 2012, 5, 2256–2265. DOI: 10.1007/s11947-011-0645-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.