556
Views
23
CrossRef citations to date
0
Altmetric
Research Article

Pulsed vacuum drying of kiwifruit slices and drying process optimization based on artificial neural network

, , , , ORCID Icon, , , & ORCID Icon show all
Pages 405-417 | Received 24 Apr 2020, Accepted 24 Aug 2020, Published online: 15 Sep 2020

References

  • Orikasa, T.; Koide, S.; Okamoto, S.; Imaizumi, T.; Muramatsu, Y.; Takeda, J.; Shiina, T.; Tagawa, A. Impacts of Hot Air and Vacuum Drying on the Quality Attributes of Kiwifruit Slices. J. Food Eng. 2014, 125, 51–58. DOI: 10.1016/j.jfoodeng.2013.10.027.
  • Wang, J.; Xiao, H. W.; Ye, J. H.; Wang, J.; Raghavan, V. Ultrasound Pretreatment to Enhance Drying Kinetics of Kiwifruit (Actinidia deliciosa) Slices: Pros and Cons. Food Bioprocess Technol. 2019, 12, 865–876. DOI: 10.1007/s11947-019-02256-4.
  • Zhou, X.; Xu, R.; Zhang, B.; Pei, S.; Liu, Q.; Ramaswamy, H.; Wang, S. Radio Frequency-Vacuum Drying of Kiwifruits: Kinetics, Uniformity, and Product Quality. Food Bioprocess Technol. 2018, 11, 2094–2109. DOI: 10.1007/s11947-018-2169-3.
  • Tavarini, S.; Degl’Innocenti, E.; Remorini, D.; Massai, R.; Guidi, L. Antioxidant Capacity, Ascorbic Acid, Total Phenols and Carotenoids Changes during Harvest and after Storage of Hayward Kiwifruit. Food Chem. 2008, 107, 282–288. DOI: 10.1016/j.foodchem.2007.08.015.
  • Maskan, M. Drying, Shrinkage and Rehydration Characteristics of Kiwifruits during Hot Air and Microwave Drying. J. Food Eng. 2001, 48, 177–182. DOI: 10.1016/S0260-8774(00)00155-2.
  • Liu, Z. L.; Bai, J. W.; Wang, S. X.; Meng, J. S.; Wang, H.; Yu, X. L.; Gao, Z. J.; Xiao, H. W. Prediction of Energy and Exergy of Mushroom Slices Drying in Hot Air Impingement Dryer by Artificial Neural Network. Drying Technol. DOI: 10.1080/07373937.2019.1607873.
  • Yu, X. L.; Zielinska, M.; Ju, H. Y.; Mujumdar, A. S.; Duan, X.; Gao, Z. J.; Xiao, H. W. Multistage Relative Humidity Control Strategy Enhances Energy and Exergy Efficiency of Convective Drying of Carrot Cubes. Int. J. Heat Mass Transf. 2020, 149, 119231. DOI: 10.1016/j.ijheatmasstransfer.2019.119231.
  • Mujumdar, A. S. Handbook of Industrial Drying; Taylor & Francis: Philadelphia, 2007.
  • Bai-Ngew, S.; Therdthai, N.; Dhamvithee, P.; Zhou, W. B. Effect of Microwave Vacuum Drying and Hot Air Drying on the Physicochemical Properties of Durian Flour. Int. J. Food Sci. Technol. 2015, 50, 305–312. DOI: 10.1111/ijfs.12651.
  • Song, X. D.; Mujumdar, A. S.; Law, C. L.; Fang, X. M.; Peng, W. J.; Deng, L. Z.; Wang, J.; Xiao, H. W. Effect of Drying Air Temperature on Drying Kinetics, Color, Carotenoid Content, Antioxidant Capacity and Oxidation of Fat for Lotus Pollen. Drying Technol. 2020, 38, 1151–1164. DOI: 10.1080/07373937.2019.1616752.
  • Wang, J.; Mujumdar, A. S.; Wang, H.; Fang, X. M.; Xiao, H. W.; Raghavan, V. G. S. Effect of Drying Method and Cultivar on Sensory Attributes, Textural Profiles and Volatile Characteristics of Grape Raisins. Drying Technol. DOI: 10.1080/07373937.2019.1709199.
  • Benlloch-Tinoco, M.; Moraga, G.; del Mar Camacho, M.; Martínez-Navarrete, N. Combined Drying Technologies for High-Quality Kiwifruit Powder Production. Food Bioprocess Technol. 2013, 6, 3544–3553. DOI: 10.1007/s11947-012-1030-3.
  • Tian, Y.; Wu, S.; Zhao, Y.; Zhang, Q.; Huang, J.; Zheng, B. Drying Characteristic and Processing Parameters for Microwave-Vacuum Drying of Kiwifruit (Actinadia Deliciosa) Slices. J. Food Process. Preserv. 2015, 39, 2620–2629. DOI: 10.1111/jfpp.12512.
  • Izli, N.; Izli, G.; Taskin, O. Drying Kinetics, Colour, Total Phenolic Content and Antioxidant Capacity Properties of Kiwi Dried by Different Methods. Food Meas. 2017, 11, 64–74. DOI: 10.1007/s11694-016-9372-6.
  • Zielinska, M.; Ropelewska, E.; Xiao, H. W.; Mujumdar, A. S.; Law, C. L. Review of Recent Applications and Research Progress in Hybrid and Combined Microwave-Assisted Drying of Food Products: Quality Properties. Crit. Rev. Food Sci. Nutr. 2020, 60, 2212–2264. DOI: 10.1080/10408398.2019.1632788.
  • Sharma, G. P.; Prasad, S. Optimization of Process Parameters for Microwave Drying of Garlic Cloves. J. Food Eng. 2006, 75, 441–446. DOI: 10.1016/j.jfoodeng.2005.04.029.
  • Zhang, F.; Zhang, M.; Mujumdar, A. S. Drying Characteristics and Quality of Restructured Wild Cabbage Chips Processed Using Different Drying Methods. Drying Technol. 2011, 29, 682–688. DOI: 10.1080/07373937.2010.525729.
  • Xie, Y.; Gao, Z.; Liu, Y.; Xiao, H. Pulsed Vacuum Drying of Rhizoma Dioscoreae Slices. LWT - Food Sci. Technol. 2017, 80, 237–249. DOI: 10.1016/j.lwt.2017.02.016.
  • Moreno, J.; Gonzales, M.; Zúniga, P.; Petzold, G.; Mella, K.; Munoz, O. Ohmic Heating and Pulsed Vacuum Effect on Dehydration Processes and Polyphenol Component Retention of Osmodehydrated Bluberries (cv. Tifblue). Innovat. Food Sci. Emerg. Technol. 2016, 36, 112–119. DOI: 10.1016/j.ifset.2016.06.005.
  • Wang, J.; Law, C. L.; Nema, P. K.; Zhao, J. H.; Liu, Z. L.; Deng, L. Z.; Gao, Z. J.; Xiao, H. W. Pulsed Vacuum Drying Enhances Drying Kinetics and Quality of Lemon Slices. J. Food Eng. 2018, 224, 129–138. DOI: 10.1016/j.jfoodeng.2018.01.002.
  • Xie, L.; Mujumdar, A. S.; Fang, X. M.; Wang, J.; Dai, J. W.; Du, Z. L.; Xiao, H. W.; Liu, Y. H.; Gao, Z. J. Far-Infrared Radiation Heating Assisted Pulsed Vacuum Drying (FIR-PVD) of Wolfberry (Lycium barbarum L.). Effects on Drying Kinetics and Quality Attributes. Food Bioprod. Process. 2017, 102, 320–331. DOI: 10.1016/j.fbp.2017.01.012.
  • Maache-Rezzoug, Z.; Rezzoug, S. A.; Allaf, K. Kinetics of Drying and Hydration of the Scleroglucan Polymer. A Comparative Study of Two Conventional Drying Methods with a New Drying Process: Dehydration by Successive Pressure Drops. Drying Technol. 2001, 19, 1961–1974. DOI: 10.1081/DRT-100107283.
  • Deng, L. Z.; Yang, X. H.; Mujumdar, A. S.; Zhao, J. H.; Wang, D.; Zhang, Q.; Wang, J.; Gao, Z. J.; Xiao, H. W. Red Pepper (Capsicum annuum L.) Drying: Effects of Different Drying Methods on Drying Kinetics, Physicochemical Properties, Antioxidant Capacity, and Microstructure. Drying Technol. 2018, 36, 893–907. DOI: 10.1080/07373937.2017.1361439.
  • Zhang, W.; Pan, Z.; Xiao, H. W.; Zheng, Z.; Chen, C.; Gao, Z. Pulsed Vacuum Drying (PVD) Technology Improves Drying Efficiency and Quality of Poria Cubes. Drying Technol. 2018, 36, 908–921. DOI: 10.1080/07373937.2017.1362647.
  • Xie, L.; Mujumdar, A. S.; Zhang, Q.; Wang, J.; Liu, S.; Deng, L. Z.; Wang, D.; Xiao, H. W.; Liu, Y. H.; Gao, Z. J. Effects of Pulsed Vacuum Drying Based on Infrared Radiation Heating (PVD-FIR) and Electronic Panel Contact Heating (PVD-EPC) on Drying Kinetics, Color, and Volatile Compounds of Wolfberry. Drying Technol. 2017, 35, 1312–1326. DOI: 10.1080/07373937.2017.1319854.
  • Wang, J.; Bai, J. W.; Wang, D.; Fang, X. M.; Xue, L. Y.; Zheng, Z. A.; Gao, Z. J.; Xiao, H. W. Pulsed Vacuum Drying of Chinese Ginger (Zingiber officinale Roscoe) Slices: Effects on Drying Characteristics, Rehydration Ratio, Water Holding Capacity, and Microstructure. Drying Technol. 2019, 37, 301–311. DOI: 10.1080/07373937.2017.1423325.
  • Jokiniemi, H. T.; Ahokas, J. M. Drying Process Optimization in a Mixed-Flow Batch Grain Dryer. Biosyst. Eng. 2014, 121, 209–220. DOI: 10.1016/j.biosystemseng.2014.01.002.
  • Wang, H.; Zhang, Q.; Mujumdar, A. S.; Fang, X. M.; Wang, J.; Pei, Y. P.; Wu, W.; Zielinska, M.; Xiao, H. W. High-Humidity Hot Air Impingement Blanching (HHAIB) Efficiently Inactivates Enzymes, Enhances Extraction of Phytochemicals and Mitigates Brown Actions of Chili Pepper. Food Control 2020, 111, 107050. DOI: 10.1016/j.foodcont.2019.107050.
  • Rouissi, T.; Mahmoudi, A.; Tyagi, R. D.; Brar, S. K.; Prévost, D.; Surampalli, R. Y. Optimization of Spray Drying by Response Surface Methodology for the Production of Sinorhizobium meliloti Powder Formulation by Using Starch Industry Wastewater. Biosyst. Eng. 2013, 114, 334–343. DOI: 10.1016/j.biosystemseng.2013.01.003.
  • Balasubramani, P.; Viswanathan, R.; Vairamani, M. Response Surface Optimization of Process Variables for Microencapsulation of Garlic (Allium sativum L.) Oleoresin by Spray Drying. Biosyst. Eng. 2013, 114, 205–213. DOI: 10.1016/j.biosystemseng.2012.12.008.
  • Liu, Z. L.; Nan, F.; Zheng, X.; Zielinska, M.; Duan, X.; Deng, L. Z.; Wang, J.; Wu, W.; Gao, Z. J.; Xiao, H. W. Color Prediction of Mushroom Slices during Drying Using Bayesian Extreme Learning Machine. Drying Technol. DOI: 10.1080/07373937.2019.1675077.
  • Winiczenko, R.; Górnicki, K.; Kaleta, A.; Martynenko, A.; Janaszek-Mańkowska, M.; Trajer, J. Multi-Objective Optimization of Convective Drying of Apple Cubes. Comput. Electron. Agric. 2018, 145, 341–348. DOI: 10.1016/j.compag.2018.01.006.
  • Nikbakht, A. M.; Motevali, A.; Minaei, S. Energy and Exergy Investigation of Microwave Assisted Thin-Layer Drying of Pomegranate Arils Using Artificial Neural Networks and Response Surface Methodology. J. Saudi Soc. Agric. Sci. 2014, 13, 81–91. DOI: 10.1016/j.jssas.2013.01.005.
  • Agngin, D.; Tiryaki, A. E. Application of Response Surface Methodology and Artificial Neural Network on Pyrolysis of Safflower Seed Press Cake. Drying Technol. 2016, 38, 1055–1061. DOI: 10.1080/15567036.2013.862585.
  • AOAC. Official Method of Analysis; Association of Official Analytical Chemists (No. 934.06): Arlington, VA, 1990.
  • Deng, L. Z.; Pan, Z.; Zhang, Q.; Liu, Z. L.; Zhang, Y.; Meng, J. S.; Gao, Z. J.; Xiao, H. W. Effects of Ripening Stage on Physicochemical Properties, Drying Kinetics, Pectin Polysaccharides Contents and Nanostructure of Apricots. Carbohydr. Polym. 2019, 222, 114980. DOI: 10.1016/j.carbpol.2019.114980.
  • Zhang, X. L.; Zhong, C. S.; Mujumdar, A. S.; Yang, X. H.; Deng, L. Z.; Wang, J.; Xiao, H. W. Cold Plasma Pretreatment Enhances Drying Kinetics and Quality Attributes of Chili Pepper (Capsicum annuum L.). J. Food Eng. 2019, 241, 51–57. DOI: 10.1016/j.jfoodeng.2018.08.002.
  • Deng, L. Z.; Pan, Z.; Mujumdar, A. S.; Zhao, J. H.; Zheng, Z. A.; Gao, Z. J.; Xiao, H. W. High-Humidity Hot Air Impingement Blanching (HHAIB) Enhances Drying Quality of Apricots by Inactivating the Enzymes, Reducing Drying Time and Altering Cellular Structure. Food Control 2019, 96, 104–111. DOI: 10.1016/j.foodcont.2018.09.008.
  • Zhang, Y.; Zielinska, M.; Vidyarthi, S. K.; Zhao, J. H.; Pei, Y. P.; Li, G.; Zheng, Z. A.; Wu, M.; Gao, Z. J.; Xiao, H. W. Pulsed Pressure Pickling Enhances Acetic Acid Transfer, Thiosulfinates Degradation, Color and Ultrastructure Changes of “Laba” Garlic. Innov. Food Sci. Emerg. Technol. 2020, 65, 102438. Article 102438. DOI: 10.1016/j.ifset.2020.102438.
  • Liu, Z. L.; Bai, J. W.; Yang, W. X.; Wang, J.; Deng, L. Z.; Yu, X. L.; Zheng, Z. A.; Gao, Z. J.; Xiao, H. W. Effect of High-Humidity Hot Air Impingement Blanching (HHAIB) and Drying Parameters on Drying Characteristics and Quality of Broccoli Florets. Drying Technol. 2019, 37, 1251–1264. DOI: 10.1080/07373937.2018.1494185.
  • Wang, H.; Fang, X. M.; Sutar, P. P.; Meng, J. S.; Wang, J.; Yu, X. L.; Xiao, H. W. Effects of Vacuum-Steam Pulsed Blanching on Drying Kinetics, Colour, Phytochemical Contents, Antioxidant Capacity of Carrot and the Mechanism of Carrot Quality Changes Revealed by Texture, Microstructure and Ultrastructure . Food Chem. 2020, 338, 127799. Article 127799. DOI: 10.1016/j.foodchem.2020.127799.
  • Li, H.; Xie, L.; Ma, Y.; Zhang, M.; Zhao, Y.; Zhao, X. Effects of Drying Methods on Drying Characteristics, Physicochemical Properties and Antioxidant Capacity of Okra. LWT – Food Sci. Technol. 2019, 101, 630–638. DOI: 10.1016/j.lwt.2018.11.076.
  • Martínez-Martínez, V.; Gomez-Gil, J.; Stombaugh, T. S.; Montross, M. D.; Aguiar, J. M. Moisture Content Prediction in the Switchgrass (Panicum virgatum) Drying Process Using Artificial Neural Networks. Drying Technol. 2015, 33, 1708–1719. DOI: 10.1080/07373937.2015.1005228.
  • Nadian, M. H.; Rafiee, S.; Aghbashlo, M.; Hosseinpour, S.; Mohtasebi, S. S. Continuous Real-Time Monitoring and Neural Network Modeling of Apple Slices Color Changes during Hot Air Drying. Food Bioprod. Process. 2015, 94, 263–274. DOI: 10.1016/j.fbp.2014.03.005.
  • Dai, J. W.; Rao, J. Q.; Wang, D.; Xie, L.; Xiao, H. W.; Liu, Y. H.; Gao, Z. J. Process-Based Drying Temperature and Humidity Integration Control Enhances Drying Kinetics of Apricot Halves. Drying Technol. 2015, 33, 365–376. DOI: 10.1080/07373937.2014.954667.
  • Ju, H. Y.; El-Mashad, H. M.; Fang, X. M.; Pan, Z.; Xiao, H. W.; Liu, Y. H.; Gao, Z. J. Drying Characteristics and Modeling of Yam Slices under Different Relative Humidity Conditions. Drying Technol. 2016, 34, 296–306. DOI: 10.1080/07373937.2015.1052082.
  • Chen, Y.; Martynenko, A. Computer Vision for Real-Time Measurements of Shrinkage and Color Changes in Blueberry Convective Drying. Drying Technol. 2013, 31, 1114–1123. DOI: 10.1080/07373937.2013.775587.
  • Devahastin, S.; Niamnuy, C. Modelling Quality Changes of Fruits and Vegetables during Drying: A Review. Int. J. Food Sci. Technol. 2010, 45, 1755–1767. DOI: 10.1111/j.1365-2621.2010.02352.x.
  • Dadali, G.; Demirhan, E.; Özbek, B. Color Change Kinetics of Spinach Undergoing Microwave Drying. Drying Technol. 2007, 25, 1713–1723. DOI: 10.1080/07373930701590988.
  • Aral, S.; Beşe, A. V. Convective Drying of Hawthorn Fruit (Crataegus Spp.): Effect of Experimental Parameters on Drying Kinetics, Color, Shrinkage, and Rehydration capacity. Food Chem. 2016, 210, 577–584. DOI: 10.1016/j.foodchem.2016.04.128.
  • Xiao, H. W.; Pan, Z.; Deng, L. Z.; Ei-Mashad, H. M.; Yang, X. H.; Mujumdar, A. S.; Gao, Z. J.; Zhang, Q. Recent Developments and Trends in Thermal Blanching - A Comprehensive Review. Inform. Process. Agric. 2017, 4, 101–127. DOI: 10.1016/j.inpa.2017.02.001.
  • Deng, L. Z.; Mujumdar, A. S.; Yang, W. X.; Zhang, Q.; Zheng, Z. A.; Wu, M.; Xiao, H. W. Hot Air Impingement Drying Kinetics and Quality Attributes of Orange Peel. J. Food Process. Preserv. 2020, 44, e14294. DOI: 10.1111/jfpp.14294.
  • Diamante, L.; Durand, M.; Savage, G.; Vanhanen, L. Effect of Temperature on the Drying Characteristics, Colour and Ascorbic Acid Content of Green and Gold Kiwifruits. Inter. Food Res. J. 2010, 17, 441–451.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.