797
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Development of flavor during drying and applications of edible mushrooms: A review

, &
Pages 1685-1703 | Received 19 Nov 2020, Accepted 07 Jan 2021, Published online: 04 Feb 2021

References

  • Wang, S.; Chen, H.; Sun, B. Recent Progress in Food Flavor Analysis Using Gas Chromatography-Ion Mobility Spectrometry (GC-IMS). Food Chem. 2020, 315, 126158. DOI: 10.1016/j.foodchem.2019.126158.
  • Hoffmann, T.; Kurtzer, R.; Skowranek, K.; Kiessling, P.; Fridman, E.; Pichersky, E.; Schwab, W. Metabolic Engineering in Strawberry Fruit Uncovers a Dormant Biosynthetic Pathway. Metab. Eng. 2011, 13, 527–531. DOI: 10.1016/j.ymben.2011.06.002.
  • Zhu, Z.; Liu, R.; Li, B.; Tian, S. Characterisation of Genes Encoding Key Enzymes Involved in Sugar Metabolism of Apple Fruit in Controlled Atmosphere Storage. Food Chem. 2013, 141, 3323–3328. DOI: 10.1016/j.foodchem.2013.06.025.
  • Tieman, D. Transcriptional Control of Strawberry Ripening - Two to Tango. J. Exp. Bot. 2017, 68, 4407–4409. DOI: 10.1093/jxb/erx285.
  • Song, J.; Bangerth, F. Fatty Acids as Precursors for Aroma Volatile Biosynthesis in Pre-climacteric and Climacteric Apple Fruit. Postharvest Biol. Technol. 2003, 30, 113–121. DOI: 10.1016/S0925-5214(03)00098-X.
  • Jiang, N.; Xu, B.; Zhao, L.; Huang, M.; Zhou, G. Effects of High-Temperature-Short Time (HTST) Drying Process on Proteolysis, Lipid Oxidation and Sensory Attributes of Chinese Dry-Cured Chicken. Cyta-J. Food 2016, 14, 1–448. DOI: 10.1080/19476337.2015.1124291.
  • Wang, A.; Kang, D.; Zhang, W.; Zhang, C.; Zou, Y.; Zhou, G. Changes in Calpain Activity, Protein Degradation and Microstructure of Beef M-Semitendinosus by the Application of Ultrasound. Food Chem. 2018, 245, 724–730. DOI: 10.1016/j.foodchem.2017.12.003.
  • Piskov, S.; Timchenko, L.; Grimm, W.-D.; Rzhepakovsky, I.; Avanesyan, S.; Sizonenko, M.; Kurchenko, V. Effects of Various Drying Methods on Some Physico-Chemical Properties and the Antioxidant Profile and ACE Inhibition Activity of Oyster Mushrooms (Pleurotus Ostreatus). Foods 2020, 9, 160. DOI: 10.3390/foods9020160.
  • Turło, J.; Gutkowska, B.; Herold, F.; Krzyczkowski, W.; Błażewicz, A.; Kocjan, R. Optimizing Vitamin B-12 Biosynthesis by Mycelial Cultures of Lentinula edodes (Berk.) Pegl. Enzyme Microb. Technol. 2008, 43, 369–374. DOI: 10.1016/j.enzmictec.2008.05.005.
  • Yanan, S.; Min, Z.; Zhongxiang, F. Efficient Physical Extraction of Active Constituents from Edible Fungi and Their Potential Bioactivities: A Review. Trends Food Sci. Technol. 2020, 105, 468–482.
  • Jiang, Q.; Zhang, M.; Mujumdar, A. S. UV Induced Conversion during Drying of Ergosterol to Vitamin D in Various Mushrooms: Effect of Different Drying Conditions. Trends Food Sci. Technol. 2020, 105, 200–210. DOI: 10.1016/j.tifs.2020.09.011.
  • Zhang, M.; Tang, J.; Mujumdar, A. S.; Wang, S. Trends in Microwave-Related Drying of Fruits and Vegetables. Trends Food Sci. Technol. 2006, 17, 524–534. DOI: 10.1016/j.tifs.2006.04.011.
  • Zhang, M.; Chen, H.; Mujumdar, A. S.; Tang, J.; Miao, S.; Wang, Y. Recent Developments in High-Quality Drying of Vegetables, Fruits, and Aquatic Products. Crit. Rev. Food Sci. Nutr. 2017, 57, 1239–1255. DOI: 10.1080/10408398.2014.979280.
  • Jiang, H.; Zhang, M.; Mujumdar, A. S.; Lim, R.-X. Comparison of Drying Characteristic and Uniformity of Banana Cubes Dried by Pulse-Spouted Microwave Vacuum Drying, Freeze Drying and Microwave Freeze Drying. J. Sci. Food Agric. 2014, 94, 1827–1834. DOI: 10.1002/jsfa.6501.
  • Wang, Y.; Zhang, M.; Mujumdar, A. S.; Mothibe, K. J. Microwave-Assisted Pulse-Spouted Bed Freeze-Drying of Stem Lettuce Slices-Effect on Product Quality. Food Bioprocess Technol. 2013, 6, 3530–3543. DOI: 10.1007/s11947-012-1017-0.
  • Huang, L.-l.; Zhang, M. Trends in Development of Dried Vegetable Products as Snacks. Drying Technol. 2012, 30, 448–461. DOI: 10.1080/07373937.2011.644648.
  • Roknul, A. S. M.; Zhang, M.; Mujumdar, A. S.; Wang, Y. A Comparative Study of Four Drying Methods on Drying Time and Quality Characteristics of Stem Lettuce Slices (Lactuca sativa L.). Drying Technol. 2014, 32, 657–666. DOI: 10.1080/07373937.2013.850435.
  • Yingqiang, W.; Min, Z.; Mujumdar, A. S. Trends in Processing Technologies for Dried Aquatic Products. Drying Technol. 2011, 29, 382–394. DOI: 10.1080/07373937.2011.551624.
  • Sun, L.-b.; Zhang, Z.-y.; Xin, G.; Sun, B.-x.; Bao, X.-j.; Wei, Y.-y.; Zhao, X.-m.; Xu, H.-r. Advances in Umami Taste and Aroma of Edible Mushrooms. Trends Food Sci. Technol. 2020, 96, 176–187. DOI: 10.1016/j.tifs.2019.12.018.
  • Thewes, F. R.; Brackmann, A.; Anese, R. d. O.; Ludwig, V.; Schultz, E. E.; Dos Santos, L. F.; Wendt, L. M. Effect of Dynamic Controlled Atmosphere Monitored by Respiratory Quotient and 1-Methylcyclopropene on the Metabolism and Quality of 'Galaxy' Apple Harvested at Three Maturity Stages. Food Chem. 2017, 222, 84–93. DOI: 10.1016/j.foodchem.2016.12.009.
  • Løkke, M. M.; Edelenbos, M.; Larsen, E.; Feilberg, A. Investigation of Volatiles Emitted from Freshly Cut Onions (Allium Cepa L.) by Real Time Proton-Transfer Reaction-Mass Spectrometry (PTR-MS). Sensors (Basel) 2012, 12, 16060–16076. DOI: 10.3390/s121216060.
  • Ito, Y.; Kubota, K. Sensory Evaluation of the Synergism among Odorants Present in Concentrations below Their Odor Threshold in a Chinese Jasmine Green Tea Infusion. Mol. Nutr. Food Res. 2005, 49, 61–68. DOI: 10.1002/mnfr.200400021.
  • Defilippi, B. G.; Dandekar, A. M.; Kader, A. A. Relationship of Ethylene Biosynthesis to Volatile Production, Related Enzymes, and Precursor Availability in Apple Peel and Flesh Tissues. J Agric. Food Chem. 2005, 53, 3133–3141. DOI: 10.1021/jf047892x.
  • Zhang, L.; Liao, L.; Qiao, Y.; Wang, C.; Shi, D.; An, K.; Hu, J. Effects of Ultrahigh Pressure and Ultrasound Pretreatments on Properties of Strawberry Chips Prepared by Vacuum-Freeze Drying. Food Chem. 2020, 303, 125386. DOI: 10.1016/j.foodchem.2019.125386.
  • Noussair, C.; Robin, S.; Ruffieux, B. A Comparison of Hedonic Rating and Demand-Revealing Auctions. Food Qual. Preference 2004, 15, 393–402. DOI: 10.1016/S0950-3293(03)00086-7.
  • Meitinger, M.; Hartmann, S.; Schieberle, P. Development of Stable Isotope Dilution Assays for the Quantitation of Amadori Compounds in Foods. J. Agric. Food Chem. 2014, 62, 5020–5027. DOI: 10.1021/jf501464g.
  • Perez-Burillo, S.; Angel Rufian-Henares, J.; Pastoriza, S. Effect of Home Cooking on the Antioxidant Capacity of Vegetables: Relationship with Maillard Reaction Indicators. Food Res. Int. 2019, 121, 514–523. DOI: 10.1016/j.foodres.2018.12.007.
  • Cao, C.; Xie, J.; Hou, L.; Zhao, J.; Chen, F.; Xiao, Q.; Zhao, M.; Fan, M. Effect of Glycine on Reaction of Cysteine-Xylose: Insights on Initial Maillard Stage Intermediates to Develop Meat Flavor. Food Res. Int. 2017, 99, 444–453. DOI: 10.1016/j.foodres.2017.06.012.
  • Jeyaprakash, S.; Heffernan, J. E.; Driscoll, R. H.; Frank, D. C. Impact of Drying Technologies on Tomato Flavor Composition and Sensory Quality. LWT - Food Sci. Technol. 2020, 120, 108888. DOI: 10.1016/j.lwt.2019.108888.
  • Davidek, T.; Clety, N.; Devaud, S.; Robert, F.; Blank, I. Simultaneous Quantitative Analysis of Maillard Reaction Precursors and Products by High-Performance Anion Exchange Chromatography. J Agric. Food Chem. 2003, 51, 7259–7265. DOI: 10.1021/jf034794n.
  • Wellner, A.; Huettl, C.; Henle, T. Formation of Maillard Reaction Products during Heat Treatment of Carrots. J. Agric. Food Chem. 2011, 59, 7992–7998. DOI: 10.1021/jf2013293.
  • Sanz, M. L.; del Castillo, M. D.; Corzo, N.; Olano, A. Formation of Amadori Compounds in Dehydrated Fruits. J. Agric. Food Chem. 2001, 49, 5228–5231. DOI: 10.1021/jf010580z.
  • Gorelik, S.; Lapidot, T.; Shaham, I.; Granit, R.; Ligumsky, M.; Kohen, R.; Kanner, J. Lipid Peroxidation and Coupled Vitamin Oxidation in Simulated and Human Gastric Fluid Inhibited by Dietary Polyphenols: Health Implications. J. Agric. Food Chem. 2005, 53, 3397–3402. DOI: 10.1021/jf040401o.
  • Estevez, M.; Cava, R. Lipid and Protein Oxidation, Release of Iron from Heme Molecule and Colour Deterioration during Refrigerated Storage of Liver Pate. Meat Sci. 2004, 68, 551–558. DOI: 10.1016/j.meatsci.2004.05.007.
  • Barriuso, B.; Astiasaran, I.; Ansorena, D. A Review of Analytical Methods Measuring Lipid Oxidation Status in Foods: A Challenging Task. Eur. Food Res. Technol. 2013, 236, 1–15. DOI: 10.1007/s00217-012-1866-9.
  • Tongnuanchan, P.; Benjakul, S.; Prodpran, T. Effects of Oxygen and Antioxidants on the Lipid Oxidation and Yellow Discolouration of Film from Red Tilapia Mince. J. Sci. Food Agric. 2012, 92, 2507–2517. DOI: 10.1002/jsfa.5660.
  • Farvin, K. H. S.; Grejsen, H. D.; Jacobsen, C. Potato Peel Extract as a Natural Antioxidant in Chilled Storage of Minced Horse Mackerel (Trachurus Trachurus): Effect on Lipid and Protein Oxidation. Food Chem. 2012, 131, 843–851. DOI: 10.1016/j.foodchem.2011.09.056.
  • Tikk, K.; Haugen, J.-E.; Andersen, H. J.; Aaslyng, M. D. Monitoring of Warmed-over Flavour in Pork Using the Electronic Nose - Correlation to Sensory Attributes and Secondary Lipid Oxidation Products. Meat Sci. 2008, 80, 1254–1263. DOI: 10.1016/j.meatsci.2008.05.040.
  • Cao, J.; Zou, X.-G.; Deng, L.; Fan, Y.-W.; Li, H.; Li, J.; Deng, Z.-Y. Analysis of Nonpolar Lipophilic Aldehydes/Ketones in Oxidized Edible Oils Using HPLC-QqQ-MS for the Evaluation of Their Parent Fatty Acids. Food Res. Int. 2014, 64, 901–907. DOI: 10.1016/j.foodres.2014.08.042.
  • Davenport, M. P.; Kristinsson, H. G. Channel Catfish (Ictalurus Punctatus) Muscle Protein Isolate Performance Processed under Different Acid and Alkali pH Values. J. Food Sci. 2011, 76, E240–E247. DOI: 10.1111/j.1750-3841.2011.02083.x.
  • Wu, T.; Mao, L. Influences of Hot Air Drying and Microwave Drying on Nutritional and Odorous Properties of Grass Carp (Ctenopharyngodon Idellus) Fillets. Food Chem. 2008, 110, 647–653. DOI: 10.1016/j.foodchem.2008.02.058.
  • Zhang, J.; Zhang, M.; Shan, L.; Fang, Z. Microwave-Vacuum Heating Parameters for Processing Savory Crisp Bighead Carp (Hypophthalmichthys Nobilis) Slices. J. Food Eng. 2007, 79, 885–891. DOI: 10.1016/j.jfoodeng.2006.03.008.
  • Estevez, M. Protein Carbonyls in Meat Systems: A Review. Meat Sci. 2011, 89, 259–279.
  • Schaich, K. M. Free Radical Initiation in Proteins and Amino Acids by Ionizing and Ultraviolet Radiations and Lipid oxidation-part III: free radical transfer from oxidizing lipids. Crit. Rev. Food Sci. Nutr. 1980, 13, 189–244. DOI: 10.1080/10408398009527290.
  • Varlet, V.; Prost, C.; Serot, T. Volatile Aldehydes in Smoked Fish: Analysis Methods, Occurence and Mechanisms of Formation. Food Chem. 2007, 105, 1536–1556. DOI: 10.1016/j.foodchem.2007.03.041.
  • Estevez, M.; Ventanas, S.; Heinonen, M. Formation of Strecker Aldehydes between Protein Carbonyls - alpha-Aminoadipic and Gamma-Glutamic Semialdehydes - and Leucine and Isoleucine. Food Chem. 2011, 128, 1051–1057. DOI: 10.1016/j.foodchem.2011.04.012.
  • Sante-Lhoutellier, V.; Aubry, L.; Gatellier, P. Effect of Oxidation on in Vitro Digestibility of Skeletal Muscle Myofibrillar Proteins. J. Agric. Food Chem. 2007, 55, 5343–5348. DOI: 10.1021/jf070252k.
  • Sun, Q.; Zhang, M.; Mujumdar, A. S. Recent Developments of Artificial Intelligence in Drying of Fresh Food: A Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 2258–2275. DOI: 10.1080/10408398.2018.1446900.
  • Zhang, J.; Cao, J.; Pei, Z.; Wei, P.; Xiang, D.; Cao, X.; Shen, X.; Li, C. Volatile Flavour Components and the Mechanisms Underlying Their Production in Golden Pompano (Trachinotus Blochii) Fillets Subjected to Different Drying Methods: A Comparative Study Using an Electronic Nose, an Electronic Tongue and SDE-GC-MS. Food Res. Int. 2019, 123, 217–225. DOI: 10.1016/j.foodres.2019.04.069.
  • Pu, H.; Hu, Q.; Wang, L.; Pei, F.; Mariga, A. M.; Yang, W. Exogenous Bacterial Composition Changes Dominate Flavor Deterioration of Dried Carrots during Storage. Food Chem. Toxicol. 2019, 134, 110833. DOI: 10.1016/j.fct.2019.110833.
  • Espino-Diaz, M.; Roberto Sepulveda, D.; Gonzalez-Aguilar, G. Biochemistry of Apple Aroma: A Review. Food Technol. Biotechnol. 2016, 54, 375–394.
  • Sweetman, C.; Deluc, L. G.; Cramer, G. R.; Ford, C. M.; Soole, K. L. Regulation of Malate Metabolism in Grape Berry and Other Developing Fruits. Phytochemistry 2009, 70, 1329–1344. DOI: 10.1016/j.phytochem.2009.08.006.
  • Villatoro, C.; Echeverría, G.; Graell, J.; López, M. L.; Lara, I. Long-Term Storage of Pink Lady Apples Modifies Volatile-Involved Enzyme Activities: Consequences on Production of Volatile Esters. J. Agric. Food Chem. 2008, 56, 9166–9174. DOI: 10.1021/jf801098b.
  • Altisent, R.; Graell, J.; Lara, I.; López, L.; Echeverría, G. Increased Straight-Chain Esters Content after Ultra Low Oxygen Storage and Its Relation to the Lipoxygenase System in 'Golden Reinders (R)' Apples. Eur. Food Res. Technol. 2011, 232, 51–61. DOI: 10.1007/s00217-010-1359-7.
  • Defilippi, B. G.; Kader, A. A.; Dandekar, A. M. Apple Aroma: Alcohol Acyltransferase, a Rate Limiting Step for Ester Biosynthesis, is Regulated by Ethylene. Plant Sci. 2005, 168, 1199–1210. DOI: 10.1016/j.plantsci.2004.12.018.
  • Chervin, C.; Speirs, J.; Loveys, B.; Patterson, B. D. Influence of Low Oxygen Storage on Aroma Compounds of Whole Pears and Crushed Pear Flesh. Postharvest Biol. Technol. 2000, 19, 279–285. DOI: 10.1016/S0925-5214(00)00096-X.
  • Pesis, E. The Role of the Anaerobic Metabolites, Acetaldehyde and Ethanol, in Fruit Ripening, Enhancement of Fruit Quality and Fruit Deterioration. Postharvest Biol. Technol. 2005, 37, 1–19. DOI: 10.1016/j.postharvbio.2005.03.001.
  • Belay, Z. A.; Caleb, O. J.; Mahajan, P. V.; Opara, U. L. Pomegranate Arils ("Wonderful") Tolerance to Low O2 Stress during Active Modified Atmosphere Storage: based on Real Time Respiration Rate. Acta Hortic. 2018, 1201, 213–218. DOI: 10.17660/ActaHortic.2018.1201.29.
  • Contreras, C.; Tjellström, H.; Beaudry, R. M. Relationships between Free and Esterified Fatty Acids and LOX-Derived Volatiles during Ripening in Apple. Postharvest Biol. Technol. 2016, 112, 105–113. DOI: 10.1016/j.postharvbio.2015.10.009.
  • Lara, I.; Graell, J.; López, M. L.; Echeverría, G. Multivariate Analysis of Modifications in Biosynthesis of Volatile Compounds after CA Storage of 'Fuji' Apples. Postharvest Biol. Technol. 2006, 39, 19–28. DOI: 10.1016/j.postharvbio.2005.09.001.
  • Anese, M.; Sovrano, S. Kinetics of Thermal Inactivation of Tomato Lipoxygenase. Food Chem. 2006, 95, 131–137. DOI: 10.1016/j.foodchem.2004.12.026.
  • Shan, W.; Zhao, C.; Fan, J.; Cong, H.; Liang, S.; Yu, X. Antisense Suppression of Alcohol Acetyltransferase Gene in Ripening Melon Fruit Alters Volatile Composition. Sci. Hortic. 2012, 139, 96–101. DOI: 10.1016/j.scienta.2012.03.010.
  • Lin, S.; Yang, R.; Cheng, S.; Wang, K.; Qin, L. Decreased Quality and off-Flavour Compound Accumulation of 3–10 kDa Fraction of Pine Nut (Pinus Koraiensis) Peptide during Storage. LWT - Food Sci. Technol. 2017, 84, 23–33. DOI: 10.1016/j.lwt.2017.05.032.
  • Nagy-Gasztonyi, M.; Kardos-Neumann, Á.; Biacs, P. Á. Potential Indicator Enzyme s at Broccoli Blanching Tecnology. Acta Aliment. 2000, 29, 181–186. DOI: 10.1556/AAlim.29.2000.2.8.
  • Raseetha, S.; Oey, I.; Burritt, D. J.; Heenan, S.; Hamid, N. Evolution of Antioxidant Enzymes Activity and Volatile Release during Storage of Processed Broccoli (Brassica Oleracea L. italica). LWT - Food Sci. Technol. 2013, 54, 216–223. DOI: 10.1016/j.lwt.2013.05.024.
  • Dekker, R. Enzymes in Food and Beverage Processing (Part 1). Food Australia 1994, 46, 136.
  • Tian, Y.; Zhao, Y.; Huang, J.; Zeng, H.; Zheng, B. Effects of Different Drying Methods on the Product Quality and Volatile Compounds of Whole Shiitake Mushrooms. Food Chem. 2016, 197, 714–722. DOI: 10.1016/j.foodchem.2015.11.029.
  • Nagy-Gasztonyi, M.; Biekman, E.; Krebbers, B. Working up a Lactofermented Vegetable Product. Acta Aliment. 2002, 31, 407–412. DOI: 10.1556/AAlim.31.2002.4.9.
  • Poojary, M. M.; Orlien, V.; Passamonti, P.; Olsen, K. Improved Extraction Methods for Simultaneous Recovery of Umami Compounds from Six Different Mushrooms. J. Food Compos. Anal. 2017, 63, 171–183. DOI: 10.1016/j.jfca.2017.08.004.
  • Bozok, F.; Zarifikhosroshahi, M.; Kafkas, E.; Taşkin, H.; Buyukalaca, S. Comparison of Volatile Compounds of Fresh Boletus Edulis and B. pinophilus in Marmara Region of Turkey. Not. Bot. Horti Agrobo. 2015, 43, 192–195. DOI: 10.15835/nbha4319731.
  • Tsai, S.-Y.; Tsai, H.-L.; Mau, J.-L. Non-volatile Taste Components of Agaricus Blazei, Agrocybe Cylindracea and Boletus Edulis. Food Chem. 2008, 107, 977–983. DOI: 10.1016/j.foodchem.2007.07.080.
  • Zhuang, J.; Xiao, Q.; Feng, T.; Huang, Q.; Ho, C.-T.; Song, S. Comparative Flavor Profile Analysis of Four Different Varieties of Boletus Mushrooms by Instrumental and Sensory Techniques. Food Res. Int. 2020, 136, 109485. DOI: 10.1016/j.foodres.2020.109485.
  • Pei, F.; Shi, Y.; Gao, X.; Wu, F.; Mariga, A. M.; Yang, W.; Zhao, L.; An, X.; Xin, Z.; Yang, F.; Hu, Q. Changes in Non-volatile Taste Components of Button Mushroom (Agaricus Bisporus) during Different Stages of Freeze Drying and Freeze Drying Combined with Microwave Vacuum Drying. Food Chem. 2014, 165, 547–554. DOI: 10.1016/j.foodchem.2014.05.130.
  • Grosshauser, S.; Schieberle, P. Characterization of the Key Odorants in pan-fried White Mushrooms (Agaricus Bisporus L.) by Means of Molecular Sensory Science: Comparison with the Raw Mushroom Tissue. J. Agric. Food Chem. 2013, 61, 3804–3813. DOI: 10.1021/jf4006752.
  • Li, Q.; Zhang, H.-H.; Claver, I. P.; Zhu, K.-X.; Peng, W.; Zhou, H.-M. Effect of Different Cooking Methods on the Flavour Constituents of Mushroom (Agaricus Bisporus (Lange) Sing) Soup. Int. J. Food Sci. Technol. 2011, 46, 1100–1108. DOI: 10.1111/j.1365-2621.2011.02592.x.
  • Yang, W.; Yu, J.; Pei, F.; Mariga, A. M.; Ma, N.; Fang, Y.; Hu, Q. Effect of Hot Air Drying on Volatile Compounds of Flammulina Velutipes Detected by HS-SPME-GC-MS and Electronic Nose. Food Chem. 2016, 196, 860–866. DOI: 10.1016/j.foodchem.2015.09.097.
  • Donglu, F.; Wenjian, Y.; Kimatu, B. M.; Liyan, Z.; Xinxin, A.; Qiuhui, H. Comparison of Flavour Qualities of Mushrooms (Flammulina Velutipes) Packed with Different Packaging Materials. Food Chem. 2017, 232, 1–9. DOI: 10.1016/j.foodchem.2017.03.161.
  • Phat, C.; Moon, B.; Lee, C. Evaluation of Umami Taste in Mushroom Extracts by Chemical Analysis, Sensory Evaluation, and an Electronic Tongue System. Food Chem. 2016, 192, 1068–1077. DOI: 10.1016/j.foodchem.2015.07.113.
  • Li, X.; Feng, T.; Zhou, F.; Zhou, S.; Liu, Y.; Li, W.; Ye, R.; Yang, Y. Effects of Drying Methods on the Tasty Compounds of Pleurotus Eryngii. Food Chem. 2015, 166, 358–364. DOI: 10.1016/j.foodchem.2014.06.049.
  • Guo, Y.; Chen, D.; Dong, Y.; Ju, H.; Wu, C.; Lin, S. Characteristic Volatiles Fingerprints and Changes of Volatile Compounds in Fresh and Dried Tricholoma Matsutake Singer by HS-GC-IMS and HS-SPME-GC-MS. J. Chromatogr. B 2018, 1099, 46–55. DOI: 10.1016/j.jchromb.2018.09.011.
  • Carvalho, L. M.; Carvalho, F.; de Lourdes Bastos, M.; Baptista, P.; Moreira, N.; Monforte, A. R.; da Silva Ferreira, A. C.; de Pinho, P. G. Non-targeted and Targeted Analysis of Wild Toxic and Edible Mushrooms Using Gas Chromatography-Ion Trap Mass Spectrometry. Talanta. 2014, 118, 292–303. DOI: 10.1016/j.talanta.2013.09.038.
  • Tsai, S.-Y.; Huang, S.-J.; Lo, S.-H.; Wu, T.-P.; Lian, P.-Y.; Mau, J.-L. Flavour Components and Antioxidant Properties of Several Cultivated Mushrooms. Food Chem. 2009, 113, 578–584. DOI: 10.1016/j.foodchem.2008.08.034.
  • Yang, J. H.; Lin, H. C.; Mau, J. L. Non-volatile Taste Components of Several Commercial Mushrooms. Food Chem. 2001, 72, 465–471. DOI: 10.1016/S0308-8146(00)00262-4.
  • Guedes de Pinho, P.; Ribeiro, B.; Gonçalves, R. F.; Baptista, P.; Valentão, P.; Seabra, R. M.; Andrade, P. B. Aroma Compounds in Eleven Edible Mushrooms Species: relationship between Volatile Profile and Sensorial Characteristics. Expression Multidiscip. Flavour Sci. 2008, 467–471.
  • Wang, W.-K.; Zhu, Y.; Tang, Y.; Lu, N.; Song, J.-L.; Yuan, W.-D.; Jia, Y. Non-volatile Taste Components of Different Cultivated Mushrooms at Mycelia, Primordium, and Fruit Body Cultivation Stages. Int. J. Food Prop. 2016, 19, 1938–1948. DOI: 10.1080/10942912.2015.1089891.
  • Kalac, P. Chemical Composition and Nutritional Value of European Species of Wild Growing Mushrooms: A Review. Food Chem. 2009, 113, 9–16.
  • Zhang, Y.; Venkitasamy, C.; Pan, Z.; Wang, W. Recent Developments on Umami Ingredients of Edible mushrooms - A Review. Trends Food Sci. Technol. 2013, 33, 78–92. DOI: 10.1016/j.tifs.2013.08.002.
  • Chen, W.; Li, W.; Yang, Y.; Yu, H.; Zhou, S.; Feng, J.; Li, X.; Liu, Y. Analysis and Evaluation of Tasty Components in the Pileus and Stipe of Lentinula edodes at Different Growth Stages. J. Agric. Food Chem. 2015, 63, 795–801. DOI: 10.1021/jf505410a.
  • Zhang, K.; Pu, Y.-Y.; Sun, D.-W. Recent Advances in Quality Preservation of Postharvest Mushrooms (Agaricus Bisporus): A Review. Trends Food Sci. Technol. 2018, 78, 72–82. DOI: 10.1016/j.tifs.2018.05.012.
  • Dong, M.; Qin, L.; Xue, J.; Du, M.; Lin, S.-Y.; Xu, X.-B.; Zhu, B.-W. Simultaneous Quantification of Free Amino Acids and 5’-Nucleotides in Shiitake Mushrooms by Stable Isotope Labeling-LC-MS/MS Analysis. Food Chem. 2018, 268, 57–65. DOI: 10.1016/j.foodchem.2018.06.054.
  • Zong, C.; Zhang, X.; Yang, F.; Zhou, Y.; Chen, N.; Yang, Z.; Ding, G.; Yu, F.; Tang, Y. Biotransformation of a Crizotinib Intermediate Using a Mutant Alcohol Dehydrogenase of Lactobacillus Kefir Coupled with Glucose Dehydrogenase. Prep. Biochem. Biotechnol. 2019, 49, 578–583. DOI: 10.1080/10826068.2019.1591987.
  • Tressl, R.; Bahri, D.; Engel, K. H. Formation of Eight-Carbon and Ten-Carbon Components in Mushrooms (Agaricus Campestris). J. Agric. Food Chem. 1982, 30, 89–93. DOI: 10.1021/jf00109a019.
  • Wurzenberger, M.; Grosch, W. Stereochemistry of the Cleavage of the 10-Hydroperoxide Isomer of Linoleic Acid to 1-Octen-3-ol by a Hydroperoxide Lyase from Mushrooms (Psalliota Bispora). Biochim. Biophys. Acta 1984, 795, 163–165. DOI: 10.1016/0005-2760(84)90117-6.
  • Pei, F.; Yang, W.; Ma, N.; Fang, Y.; Zhao, L.; An, X.; Xin, Z.; Hu, Q. Effect of the Two Drying Approaches on the Volatile Profiles of Button Mushroom (Agaricus Bisporus) by Headspace GC-MS and Electronic Nose. LWT - Food Sci. Technol. 2016, 72, 343–350. DOI: 10.1016/j.lwt.2016.05.004.
  • Misharina, T. A.; Muhutdinova, S. M.; Zharikova, G. G.; Terenina, M. B.; Krikunova, N. I.; Medvedeva, I. B. Formation of Flavor of Dry Champignons (Agaricus Bisporus L.). Appl. Biochem. Microbiol. 2010, 46, 108–113. DOI: 10.1134/S0003683810010199.
  • Hadar, Y.; Dosoretz, C. G. Mushroom Mycelium as a Potential Source of Food Flavour. Trends Food Sci. Technol. 1991, 2, 214–218. DOI: 10.1016/0924-2244(91)90693-D.
  • Wu, C. M.; Wang, Z. Volatile Compounds in Fresh and Processed Shiitake Mushrooms (Lentinus Edodes Sing.). FSTR. 2000, 6, 166–170. DOI: 10.3136/fstr.6.166.
  • Su, G.; Zheng, L.; Cui, C.; Yang, B.; Ren, J.; Zhao, M. Characterization of Antioxidant Activity and Volatile Compounds of Maillard Reaction Products Derived from Different Peptide Fractions of Peanut Hydrolysate. Food Res. Int. 2011, 44, 3250–3258. DOI: 10.1016/j.foodres.2011.09.009.
  • Sadeghi, A. A.; Shawrang, P. Effects of Microwave Irradiation on Ruminal Dry Matter, Protein and Starch Degradation Characteristics of Barley Grain. Anim. Feed Sci. Technol. 2008, 141, 184–194. DOI: 10.1016/j.anifeedsci.2007.05.034.
  • Xiao, L.; Lee, J.; Zhang, G.; Ebeler, S. E.; Wickramasinghe, N.; Seiber, J.; Mitchell, A. E. HS-SPME GC/MS Characterization of Volatiles in Raw and Dry-Roasted Almonds (Prunus dulcis). Food Chem. 2014, 151, 31–39. DOI: 10.1016/j.foodchem.2013.11.052.
  • Barros, L.; Baptista, P.; Correia, D. M.; Morais, J. S.; Ferreira, I. C. F. R. Effects of Conservation Treatment and Cooking on the Chemical Composition and Antioxidant Activity of Portuguese Wild Edible Mushrooms. J. Agric. Food Chem. 2007, 55, 4781–4788. DOI: 10.1021/jf070407o.
  • Malheiro, R.; Guedes de Pinho, P.; Soares, S.; César da Silva Ferreira, A.; Baptista, P. Volatile Biomarkers for Wild Mushrooms Species Discrimination. Food Res. Int. 2013, 54, 186–194. DOI: 10.1016/j.foodres.2013.06.010.
  • Chen, G.; Wu, F.; Pei, F.; Cheng, S.; Muinde, B.; Hu, Q.; Zhao, L. Volatile Components of White Hypsizygus Marmoreus Detected by Electronic Nose and HS-SPME-GC-MS: Influence of Four Drying Methods. Int. J. Food Prop. 2017, 20, 2901–2910. DOI: 10.1080/10942912.2016.1258575.
  • Yang, R.-L.; Li, Q.; Hu, Q.-P. Physicochemical Properties, Microstructures, Nutritional Components, and Free Amino Acids of Pleurotus Eryngii as Affected by Different Drying Methods. Sci. Rep. 2020, 10, 121. DOI: 10.1038/s41598-019-56901-1.
  • Walde, S. G.; Velu, V.; Jyothirmayi, T.; Math, R. G. Effects of Pretreatments and Drying Methods on Dehydration of Mushroom. J. Food Eng. 2006, 74, 108–115. DOI: 10.1016/j.jfoodeng.2005.02.008.
  • Kebede, B. T.; Grauwet, T.; Palmers, S.; Vervoort, L.; Carle, R.; Hendrickx, M.; Van Loey, A. Effect of High Pressure High Temperature Processing on the Volatile Fraction of Differently Coloured Carrots. Food Chem. 2014, 153, 340–352. DOI: 10.1016/j.foodchem.2013.12.061.
  • Zhao, Y.; Gao, R.; Zhuang, W.; Xiao, J.; Zheng, B.; Tian, Y. Combined Single-Stage Tempering and Microwave Vacuum Drying of the Edible Mushroom Agrocybe Chaxingu: Effects on Drying Characteristics and Physical-Chemical Qualities. LWT - Food Sci. Technol. 2020, 128, 109372. DOI: 10.1016/j.lwt.2020.109372.
  • Yoneda, C.; Okubo, K.; Kasai, M.; Hatae, K. Extractive Components of Boiled-Dried Scallop Adductor Muscle and Effect on the Taste of Soup after Mixing with Chicken Leg Meat. J. Sci. Food Agric. 2005, 85, 809–816. DOI: 10.1002/jsfa.2040.
  • Hu, S.; Feng, X.; Huang, W.; Ibrahim, S. A.; Liu, Y. Effects of Drying Methods on Non-volatile Taste Components of Stropharia Rugoso-Annulata Mushrooms. LWT - Food Sci. Technol. 2020, 127, 109428. DOI: 10.1016/j.lwt.2020.109428.
  • Wu, F.; Tang, J.; Pei, F.; Wang, S.; Chen, G.; Hu, Q.; Zhao, L. The Influence of Four Drying Methods on Nonvolatile Taste Components of White Hypsizygus Marmoreus. Eur. Food Res. Technol. 2015, 240, 823–830. DOI: 10.1007/s00217-014-2388-4.
  • Charpentier, C.; Aussenac, J.; Charpentier, M.; Prome, J.-C.; Duteurtre, B.; Feuillat, M. Release of Nucleotides and Nucleosides during Yeast Autolysis: Kinetics and Potential Impact on Flavor. J. Agric. Food Chem. 2005, 53, 3000–3007. DOI: 10.1021/jf040334y.
  • Rodriguez-Campos, J.; Escalona-Buendía, H. B.; Orozco-Avila, I.; Lugo-Cervantes, E.; Jaramillo-Flores, M. E. Dynamics of Volatile and Non-volatile Compounds in Cocoa (Theobroma cacao L.) during Fermentation and Drying Processes Using Principal Components Analysis. Food Res. Int. 2011, 44, 250–258. DOI: 10.1016/j.foodres.2010.10.028.
  • Li, Z. Y.; Wang, R. F.; Kudra, T. Uniformity Issue in Microwave Drying. Drying Technol. 2011, 29, 652–660. DOI: 10.1080/07373937.2010.521963.
  • Chandrasekaran, S.; Ramanathan, S.; Basak, T. Microwave Food processing-A Review. Food Res. Int. 2013, 52, 243–261. DOI: 10.1016/j.foodres.2013.02.033.
  • Hiraide, M.; Miyazaki, Y.; Shibata, Y. The Smell and Odorous Components of Dried Shiitake Mushroom, Lentinula edodes I: Relationship between Sensory Evaluations and Amounts of Odorous Components. J. Wood Sci. 2004, 50, 358–364. DOI: 10.1007/s10086-003-0568-0.
  • Combet, E.; Eastwood, D. C.; Burton, K. S.; Combet, E.; Henderson, J.; Henderson, J.; Combet, E. Eight-Carbon Volatiles in Mushrooms and Fungi: properties, Analysis, and Biosynthesis. Mycoscience 2006, 47, 317–326. DOI: 10.1007/S10267-006-0318-4.
  • Teshome, K.; Debela, A.; Garedew, W. Effect of Drying Temperature and Duration on Biochemical Composition and Quality of Black Tea (Camellia Sinensis L.) O. Kuntze at Wush Wush, South Western Ethiopia. Asian J. Plant Sci. 2013, 12, 235–240. DOI: 10.3923/ajps.2013.235.240.
  • Li, Y.; Chen, J.; Lai, P.; Tang, B.; Wu, L. Influence of Drying Methods on the Physicochemical Properties and Nutritional Composition of Instant Tremella Fuciformis. Food Sci. Technol. 2020, 40, 741–748. DOI: 10.1590/fst.20519.
  • Zhang, M.; Li, C. L.; Ding, X. L. Effects of Heating Conditions on the Thermal Denaturation of White Mushroom Suitable for Dehydration. Drying Technol. 2005, 23, 1119–1125.
  • Wang, Q.; Li, S.; Han, X.; Ni, Y.; Zhao, D.; Hao, J. Quality Evaluation and Drying Kinetics of Shitake Mushrooms Dried by Hot Air, Infrared and Intermittent Microwave-Assisted Drying Methods. LWT - Food Sci. Technol. 2019, 107, 236–242. DOI: 10.1016/j.lwt.2019.03.020.
  • Nöfer, J.; Lech, K.; Figiel, A.; Szumny, A.; Carbonell-Barrachina, Á. A. The Influence of Drying Method on Volatile Composition and Sensory Profile of Boletus Edulis. J. Food Qual. 2018, 2018, 1–11. DOI: 10.1155/2018/2158482.
  • Deng, Y.; Luo, Y.; Wang, Y.; Zhao, Y. Effect of Different Drying Methods on the Myosin Structure, Amino Acid Composition, Protein Digestibility and Volatile Profile of Squid Fillets. Food Chem. 2015, 171, 168–176. DOI: 10.1016/j.foodchem.2014.09.002.
  • Xu, L.; Fang, X.; Wu, W.; Chen, H.; Mu, H.; Gao, H. Effects of High-Temperature Pre-Drying on the Quality of Air-Dried Shiitake Mushrooms (Lentinula edodes). Food Chem. 2019, 285, 406–413. DOI: 10.1016/j.foodchem.2019.01.179.
  • Yang, X.; Zhang, Y.; Kong, Y.; Zhao, J.; Sun, Y.; Huang, M. Comparative Analysis of Taste Compounds in Shiitake Mushrooms Processed by Hot-Air Drying and Freeze Drying. Int. J. Food Prop. 2019, 22, 1100–1111. DOI: 10.1080/10942912.2019.1628777.
  • Parr, H.; Bolat, I.; Cook, D. Modelling Flavour Formation in Roasted Malt Substrates under Controlled Conditions of Time and Temperature. Food Chem. 2021, 337, 127641. DOI: 10.1016/j.foodchem.2020.127641.
  • Song, X.-j.; Zhang, M.; Mujumdar, A. S.; Fan, L. Drying Characteristics and Kinetics of Vacuum Microwave-Dried Potato Slices. Drying Technol. 2009, 27, 969–974. DOI: 10.1080/07373930902902099.
  • Su, Y.; Zhang, M.; Mujumdar, A. S. Recent Developments in Smart Drying Technology. Drying Technol. 2015, 33, 260–276. DOI: 10.1080/07373937.2014.985382.
  • Luo, D.; Wu, J.; Ma, Z.; Tang, P.; Liao, X.; Lao, F. Production of High Sensory Quality Shiitake Mushroom (Lentinus Edodes) by Pulsed Air-Impingement Jet Drying (AID) Technique. Food Chem. 2021, 341, 128290. DOI: 10.1016/j.foodchem.2020.128290.
  • Chun, S.; Chambers, E.; Han, I. Development of a Sensory Flavor Lexicon for Mushrooms and Subsequent Characterization of Fresh and Dried Mushrooms. Foods. 2020, 9, 980. DOI: 10.3390/foods9080980.
  • Oikonomopoulou, V. P.; Krokida, M. K.; Karathanos, V. T. The Influence of Freeze Drying Conditions on Microstructural Changes of Food Products. Procedia Food Sci. 2011, 1, 647–654. DOI: 10.1016/j.profoo.2011.09.097.
  • Ding, A.; Zhu, M.; Qian, X.; Shi, L.; Huang, H.; Xiong, G.; Wang, J.; Wang, L. Effect of Fatty Acids on the Flavor Formation of Fish Sauce. LWT - Food Sci. Technol. 2020, 134, 110259. DOI: 10.1016/j.lwt.2020.110259.
  • Calín-Sánchez, Á.; Szumny, A.; Figiel, A.; Jałoszyński, K.; Adamski, M.; Carbonell-Barrachina, Á. A. Effects of Vacuum Level and Microwave Power on Rosemary Volatile Composition during Vacuum-Microwave Drying. J. Food Eng. 2011, 103, 219–227. DOI: 10.1016/j.jfoodeng.2010.10.018.
  • Politowicz, J.; Lech, K.; Sánchez-Rodríguez, L.; Figiel, A.; Szumny, A.; Grubor, M.; Carbonell-Barrachina, Á. A. Volatile Composition and Sensory Profile of Oyster Mushroom as Affected by Drying Method. Drying Technol. 2018, 36, 685–696. DOI: 10.1080/07373937.2016.1274903.
  • Calín-Sánchez, Á.; Figiel, A.; Lech, K.; Szumny, A.; Carbonell-Barrachina, Á. A. Effects of Drying Methods on the Composition of Thyme (Thymus vulgarisL.) Essential Oil. Drying Technol. 2013, 31, 224–235. DOI: 10.1080/07373937.2012.725686.
  • Dermiki, M.; Phanphensophon, N.; Mottram, D. S.; Methven, L. Contributions of Non-volatile and Volatile Compounds to the Umami Taste and Overall Flavour of Shiitake Mushroom Extracts and Their Application as Flavour Enhancers in Cooked Minced Meat. Food Chem. 2013, 141, 77–83. DOI: 10.1016/j.foodchem.2013.03.018.
  • Wang, X.; Xu, M.; Cheng, J.; Zhang, W.; Liu, X.; Zhou, P. Effect of Flammulina Velutipes on the Physicochemical and Sensory Characteristics of Cantonese Sausages. Meat Sci. 2019, 154, 22–28. DOI: 10.1016/j.meatsci.2019.04.003.
  • Lee, K.-H.; Kim, H.-K.; Kim, S.-H.; Kim, K.-H.; Choi, Y.-M.; Jin, H.-H.; Lee, S.-J.; Ryu, Y.-C. Effects of Mushroom Extract on Textural Properties and Muscle Protein Degradation of Bovine Longissimus Dorsi Muscle. Biosci. Biotechnol, Biochem. 2017, 81, 558–564. DOI: 10.1080/09168451.2016.1263144.
  • Ulziijargal, E.; Yang, J.-H.; Lin, L.-Y.; Chen, C.-P.; Mau, J.-L. Quality of Bread Supplemented with Mushroom Mycelia. Food Chem. 2013, 138, 70–76. DOI: 10.1016/j.foodchem.2012.10.051.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.