623
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Air dehumidification with advance adsorptive materials for food drying: A critical assessment for future prospective

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1648-1666 | Received 02 Dec 2020, Accepted 30 Jan 2021, Published online: 18 Feb 2021

References

  • Sabarez, H. T. Modelling of Drying Processes for Food Materials. In Modeling Food Processing Operations; Serafim, B., Kai, K., J., F. P., Eds.; Woodhead Publishing: Oxford, 2015; pp. 95–127. DOI: 10.1016/B978-1-78242-284-6.00004-0.
  • Jangam, S. V. An Overview of Recent Developments and Some R&D Challenges Related to Drying of Foods. Dry. Technol. 2011, 29, 1343–1357. DOI: 10.1080/07373937.2011.594378.
  • Sabarez, H. T. Mathematical Modeling of the Coupled Transport Phenomena and Color Development: Finish Drying of Trellis-Dried Sultanas. Dry. Technol. 2014, 32, 578–589. DOI: 10.1080/07373937.2013.846366.
  • Sabarez, H. T. Computational Modelling of the Transport Phenomena Occurring during Convective Drying of Prunes. J. Food Eng. 2012, 111, 279–288. DOI: 10.1016/j.jfoodeng.2012.02.021.
  • Zarein, M.; Samadi, S. H.; Ghobadian, B. Investigation of Microwave Dryer Effect on Energy Efficiency during Drying of Apple Slices. J. Saudi Soc. Agric. Sci. 2015, 14, 41–47. DOI: 10.1016/j.jssas.2013.06.002.
  • Olawale, A. S.; Omole, S. O. Thin Layer Drying Models for Sweet Potato in Tray Dryer. Agric. Eng. Int. CIGR J. 2012, 14, 131–137.
  • Haryanto, B.; Hasibuan, R.; Alexander.; Ashari, M.; M. Ridha Herbal Dryer: Drying of Ginger (Zingiber Officinale) Using Tray Dryer Herbal Dryer: Drying of Ginger (Zingiber Officinale) Using Tray Dryer. IOP Conf. Ser. Earth Environ. Sci. 2018, 122, 012093. DOI: 10.1088/1755-1315/122/1/012093.
  • Jamil, F.; Arshad, R.; Ali, M. A. Design, Fabrication and Evaluation of Rotary Hot-Air Dryer for the Value Addition of Fruit Waste. Earth Sci. Pakistan 2018, 2, 7–11.
  • Nazghelichi, T.; Kianmehr, M. H.; Aghbashlo, M. Thermodynamic Analysis of Fluidized Bed Drying of Carrot Cubes. Energy 2010, 35, 4679–4684. DOI: 10.1016/j.energy.2010.09.036.
  • Darvishi, H.; Khoshtaghaza, M. H.; Minaei, S. Effects of Fluidized Bed Drying on the Quality of Soybean Kernels. J. Saudi Soc. Agric. Sci. 2015, 14, 134–139. DOI: 10.1016/j.jssas.2013.09.002.
  • Lucas, J.; Ralaivao, M.; Estevinho, B. N.; Rocha, F. A New Approach for the Microencapsulation of curcumin by a Spray Drying Method, in Order to Value Food Products. Powder Technol. 2020, 362, 428–435. DOI: 10.1016/j.powtec.2019.11.095.
  • Fissore, D.; Harguindeguy, M.; Ramirez, D. V.; Thompson, T. N. Development of Freeze-Drying Cycles for Pharmaceutical Products Using a Micro Freeze-Dryer. J. Pharm. Sci. 2020, 109, 797–806. DOI: 10.1016/j.xphs.2019.10.053.
  • Djaeni, M.; Asiah, N.; Suherman, S.; Sutanto, A.; Nurhasanah, A. Energy Efficient Dryer with Rice Husk Fuel for Agriculture Drying. Ijred. 2015, 4, 20–24. DOI: 10.14710/ijred.4.1.20-24.
  • Djaeni, M.; Utari, F. D.; Sasongko, S. B.; Kumoro, A. C. Evaluation of Food Drying with Air Dehumidification System: A Short Review. IOP Conf. Ser: Earth Environ. Sci. 2018, 102, 012069. DOI: 10.1088/1755-1315/102/1/012069.
  • Guiné, R. P. F, CI&DETS/ESAV, Polytechnic Institute of Viseu/Department of Food Industry, Viseu, Portugal The Drying of Foods and Its Effect on the Physical-Chemical, Sensorial and Nutritional Properties. Ijfe. 2018, 4, 93–100. DOI: 10.18178/ijfe.4.2.93-100.
  • Sontakke, M. S.; Salve, S. P. Solar Drying Technologies: A Review. Renew. Sustain. Energy Rev. 2012, 16, 2652–2670. DOI: 10.1016/j.rser.2012.01.007.
  • Mujumdar, A. S.; Wu, Z. 2007 Thermal Drying Technologies: New Developments and Future R&D Potential. In 5th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics; pp 1–8. DOI: 10.1142/9789812771957_0001.
  • Djaeni, M.; Sari, D. A. Low Temperature Seaweed Drying Using Dehumidified Air. Procedia Environ. Sci. 2015, 23, 2–10. DOI: 10.1016/j.proenv.2015.01.002.
  • Horszwald, A.; Julien, H.; Andlauer, W. Characterisation of Aronia Powders Obtained by Different Drying Processes. Food Chem. 2013, 141, 2858–2863. DOI: 10.1016/j.foodchem.2013.05.103.
  • Atuonwu, J. C.; Van Straten, G.; Van Deventer, H. C.; Van Boxtel, A. J. B. Optimizing Energy Efficiency in Low Temperature Drying by Zeolite Adsorption and Process Integration. Chem. Eng. Trans. 2011, 25, 111–116. DOI: 10.3303/CET1125019.
  • Wang, W.; Wu, L.; Li, Z.; Fang, Y.; Ding, J.; Xiao, J. An Overview of Adsorbents in the Rotary Desiccant Dehumidifier for Air Dehumidification. Dry. Technol. 2013, 31, 1334–1345. DOI: 10.1080/07373937.2013.792094.
  • Zhang, L.; Liu, X. H.; Jiang, Y. Ideal Efficiency Analysis and Comparison of Condensing and Liquid Desiccant Dehumidification. Energy Build 2012, 49, 575–583. DOI: 10.1016/j.enbuild.2012.03.012.
  • Gommed, K.; Grossman, G. A Liquid Desiccant System for Solar Cooling and Dehumidification. J. Sol. Energy Eng. Trans. ASME 2004, 126, 879–885. DOI: 10.1115/1.1690284.
  • Dorouzi, M.; Mortezapour, H.; Akhavan, H. R.; Moghaddam, A. G. Tomato Slices Drying in a Liquid Desiccant-Assisted Solar Dryer Coupled with a Photovoltaic-Thermal Regeneration System. Sol. Energy 2018, 162, 364–371. DOI: 10.1016/j.solener.2018.01.025.
  • Yin, Y.; Zheng, B.; Yang, C.; Zhang, X. A Proposed Compressed Air Drying Method Using Pressurized Liquid Desiccant and Experimental Verification. Appl. Energy 2015, 141, 80–89. DOI: 10.1016/j.apenergy.2014.12.015.
  • Zhan, C.; Yin, Y.; Jin, X.; Zhang, X. Experimental and Simulated Study on a Novel Compressed Air Drying System Using a. Liquid Desiccant Cycle. Energy 2018, 162, 60–71. DOI: 10.1016/j.energy.2018.07.183.
  • Bassuoni, M. M. An Experimental Study of Structured Packing Dehumidifier/Regenerator Operating with Liquid Desiccant. Energy 2011, 36, 2628–2638. DOI: 10.1016/j.energy.2011.02.004.
  • Al-Farayedhi, A. A.; Gandhidasan, P.; Al-Mutairi, M. A. Evaluation of Heat and Mass Transfer Coefficients in a Gauze-Type Structured Packing Air Dehumidifier Operating with Liquid Desiccant. Int. J. Refrig. 2002, 25, 330–339. DOI: 10.1016/S0140-7007(01)00016-0.
  • Dai, Y. J.; Wang, R. Z.; Zhang, H. F.; Yu, J. D. Use of Liquid Desiccant Cooling to Improve the Performance of Vapor Compression Air Conditioning. Appl. Therm. Eng. 2001, 21, 1185–1202. DOI: 10.1016/S1359-4311(01)00002-3.
  • Centineo, A.; Brandani, S. Measurement of Water Vapor Adsorption Isotherms in Mesoporous Materials Using the Zero Length Column Technique. Chem. Eng. Sci. 2020, 214, 115417. DOI: 10.1016/j.ces.2019.115417.
  • Ryu, Y. K.; Lee, S. J.; Kim, J. W.; Lee, C. H. Adsorption Equilibrium and Kinetics of H2O on Zeolite 13X. Korean J. Chem. Eng. 2001, 18, 525–530. DOI: 10.1007/BF02698301.
  • Djaeni, M.; van Straten, G.; Bartels, P. V.; Sanders, J. P. M.; van Boxtel, A. J. B. Energy Efficiency of Multi-Stage Adsorption Drying for Low-Temperature Drying. Dry. Technol. 2009, 27, 555–564. DOI: 10.1080/07373930802715682.
  • Kirschhock, C. E. A.; Sultana, A.; Godard, E.; Martens, J. A. Adsorption Chemistry of Sulfur Dioxide in Hydrated Na-Y Zeolite. Angew. Chem. Int. Ed. Engl. 2004, 43, 3722–3724. DOI: 10.1002/anie.200454266.
  • Dawson, R.; Stöckel, E.; Holst, J. R.; Adams, D. J.; Cooper, A. I. Microporous Organic Polymers for Carbon Dioxide Capture. In Porous Materials for Carbon Dioxide Capture; Lu, A., Dai, S., Eds.; Springer: Berlin, Heidelberg, 2014; pp 143–180. DOI: 10.1039/c1ee01971f.
  • Djaeni, M.; Sasongko, S. B.; Prasetyaningrum, A.,A.; Jin, X.; Van Boxtel, A. J. Carrageenan Drying with Dehumidified Air: Drying Characteristics and Product Quality. Int. J. Food Eng. 2012, 8, Article 32. DOI: 10.1515/1556-3758.2682.
  • Djaeni, M.; Van Asselt, C. J.; Bartels, P. V.; Sanders, J. P. M.; Van Straten, G.; Van Boxtel, A. J. Low Temperature Drying with Air Dehumidified by Zeolite for Food Products: Energy Efficiency Aspect Analysis. Int. J. Food Eng. 2011, 7, Article 4. DOI: 10.2202/1556-3758.1930.
  • Harriman, L. G. The Dehumidification Handbook, Second.; Harriman III, L. G., Ed.; Munters Corporation: Amesbury, 2002.
  • Djaeni, M.; Bartels, P. V.; van Asselt, C. J.; Sanders, J. P. M.; van Straten, G.; van Boxtel, A. J. B. Assessment of a Two-Stage Zeolite Dryer for Energy-Efficient Drying. Dry. Technol. 2009, 27, 1205–1216. DOI: 10.1080/07373930903263210.
  • Ramzy, A. K.; Hamed, A. M.; Awad, M. M.; Bekheit, M. M. Theoretical Investigation on the Cyclic Operation of Radial Flow Desiccant Bed Dehumidifier. J. Eng. Technol. Res. 2010, 2, 96–110.
  • Djaeni, M.; van Boxtel, A. J. B. PhD Thesis Summary: Energy Efficient Multistage Zeolite Drying for Heat-Sensitive Products. Dry. Technol. 2009, 27, 721–722. DOI: 10.1080/07373930902828203.
  • Ge, T. S.; Li, Y.; Wang, R. Z.; Dai, Y. J. A Review of the Mathematical Models for Predicting Rotary Desiccant Wheel. Renew. Sustain. Energy Rev. 2008, 12, 1485–1528. DOI: 10.1016/j.rser.2007.01.012.
  • Ghaddar, N.; Ghali, K.; Najm, A. Use of Desiccant Dehumidification to Improve Energy Utilization in Air-Conditioning Systems in Beirut. Int. J. Energy Res. 2003, 27, 1317–1338. DOI: 10.1002/er.945.
  • Daghooghi-Mobarakeh, H.; Campbell, N.; Bertrand, W. K.; Kumar, P. G.; Tiwari, S.; Wang, L.; Wang, R.; Miner, M.; Phelan, P. E. Ultrasound-Assisted Regeneration of Zeolite/Water Adsorption Pair. Ultrason. Sonochem. 2020, 64, 105042. DOI: 10.1016/j.ultsonch.2020.105042.
  • Xiao, J.; Song, C.; Ma, X.; Li, Z. Effects of Aromatics, Diesel Additives, Nitrogen Compounds, and Moisture on Adsorptive Desulfurization of Diesel Fuel over Activated Carbon. Ind. Eng. Chem. Res. 2012, 51, 3436–3443. DOI: 10.1021/ie202440t.
  • Carrott, P. J. M. Adsorption of Water Vapor by Non-Porous Carbons. Carbon N. Y 1992, 30, 201–205. DOI: 10.1016/0008-6223(92)90080-G.
  • Yang, R.; Jia, A.; He, S.; Hu, Q.; Dong, T.; Hou, Y.; Yan, J. Water Adsorption Characteristics of Organic-Rich Wufeng and Longmaxi Shales, Sichuan Basin (China). J. Pet. Sci. Eng. 2020, 193, 107387. DOI: 10.1016/j.petrol.2020.107387.
  • Yuan, M.; Gao, M.; Shi, Q.; Dong, J. Understanding the Characteristics of Water Adsorption in Zeolitic Imidazolate Framework-Derived Porous Carbon Materials. Chem. Eng. J. 2020, 379, (August 2019), 122412. DOI: 10.1016/j.cej.2019.122412.
  • Zou, J.; Rezaee, R.; Xie, Q.; You, L. Characterization of the Combined Effect of High Temperature and Moisture on Methane Adsorption in Shale Gas Reservoirs. J. Pet. Sci. Eng. 2019, 182, (August), 106353. DOI: 10.1016/j.petrol.2019.106353.
  • Velasco, L. F.; Snoeck, D.; Mignon, A.; Misseeuw, L.; Ania, C. O.; Van Vlierberghe, S.; Dubruel, P.; De Belie, N.; Lodewyckx, P. Role of the Surface Chemistry of the Adsorbent on the Initialization Step of the Water Sorption Process. Carbon N. Y 2016, 106, 284–288. DOI: 10.1016/j.carbon.2016.05.042.
  • Chalmers, G. R.; Bustin, M. R. The Effects and Distribution of Moisture in Gas Shale Reservoirs Systems. AAPG Annual Convention and Exhibition, New Orleans, Louisiana, April 11–14, 2010.
  • Naono, H.; Hakuman, M. Analysis of Adsorption Isotherms of Water Vapor for Nonporous and Porous Adsorbents. J. Colloid Interface Sci. 1991, 145, 405–412. DOI: 10.1016/0021-9797(91)90371-E.
  • Wahyuni, E. T.; Roto, R.; Nissa, F. A.; Mudasir, M.; Aprilita, N. H. Modified Silica Adsorbent from Volcanic Ash for Cr(VI) Anionic Removal. Indones. J. Chem. 2018, 18, 428–433. DOI: 10.22146/ijc.26905.
  • Sdiri, A.; Higashi, T.; Bouaziz, S.; Benzina, M. Synthesis and Characterization of Silica Gel from Siliceous Sands of Southern Tunisia. Arab. J. Chem. 2014, 7, 486–493. DOI: 10.1016/j.arabjc.2010.11.007.
  • Liou, T. H.; Yang, C. C. Synthesis and Surface Characteristics of Nanosilica Produced from Alkali-Extracted Rice Husk Ash. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2011, 176, 521–529. DOI: 10.1016/j.mseb.2011.01.007.
  • Ghorbani, F.; Younesi, H.; Mehraban, Z.; Çelik, M. S.; Ghoreyshi, A. A.; Anbia, M. Preparation and Characterization of Highly Pure Silica from Sedge as Agricultural Waste and Its Utilization in the Synthesis of Mesoporous Silica MCM-41. J. Taiwan Inst. Chem. Eng. 2013, 44, 821–828. DOI: 10.1016/j.jtice.2013.01.019.
  • Velmurugan, P.; Shim, J.; Lee, K. J.; Cho, M.; Lim, S. S.; Seo, S. K.; Cho, K. M.; Bang, K. S.; Oh, B. T. Extraction, Characterization, and Catalytic Potential of Amorphous Silica from Corn Cobs by Sol-Gel Method. J. Ind. Eng. Chem. 2015, 29, 298–303. DOI: 10.1016/j.jiec.2015.04.009.
  • Yoo, H.; Pak, J. Synthesis of Highly Fluorescent Silica Nanoparticles in a Reverse Microemulsion through Double-Layered Doping of Organic Fluorophores. J. Nanoparticle Res. 2013, 15, Article 1609. DOI: 10.1007/s11051-013-1609-2.
  • Cho, K.; Chang, H.; Kil, D. S.; Park, J.; Jang, H. D.; Sohn, H. Y. Mechanisms of the Formation of Silica Particles from Precursors with Different Volatilities by Flame Spray Pyrolysis. Aerosol Sci. Technol. 2009, 43, 911–920. DOI: 10.1080/02786820903025986.
  • Virji, M. A.; Stefaniak, A. B. A Review of Engineered Nanomaterial Manufacturing Processes and Associated Exposures; Comprehensive Materials Processing, Elsevier, 2014; Vol. 8, pp. 103–125. DOI: 10.1016/B978-0-08-096532-1.00811-6.
  • Buckley, A. M.; Greenblatt, M. The Sol-Gel Preparation of Silica Gels. J. Chem. Educ. 1994, 71, 599–602. DOI: 10.1021/ed071p599.
  • Yu, K.; Guo, Y.; Ding, X.; Zhao, J.; Wang, Z. Synthesis of Silica Nanocubes by Sol-Gel Method. Mater. Lett 2005, 59, 4013–4015. DOI: 10.1016/j.matlet.2005.07.055.
  • Błaszczyński, T.; Ślosarczyk, A.; Morawski, M. Synthesis of Silica Aerogel by Supercritical Drying Method. Procedia Eng. 2013, 57, 200–206. DOI: 10.1016/j.proeng.2013.04.028.
  • Ding, J.; Yang, X.; Li, G.; Liang, S.; Tan, Y. Sorption Equilibrium of Microporous Active Silica-Gel and the Effect of Sorption Properties on the Performance of the Desiccant Rotary Dehumidifiers. Huaxue Gongcheng/Chem. Eng. 1998, 26, 11–13.
  • Seshadri, S. K.; Lin, Y. S. Synthesis and Water Vapor Separation Properties of Pure Silica and Aluminosilicate MCM-48 Membranes. Sep. Purif. Technol 2011, 76, 261–267. DOI: 10.1016/j.seppur.2010.10.014.
  • Fang, Y. T.; Ding, J.; Fan, J.; Yang, J. P.; Yang, X. X. Preparation and Performance of Novel Al3+ Modified Silica Gel Adsorptive Materials. Wuji Cailiao Xuebao/Journal Inorg. Mater. 2005, 20, 933–939.
  • Li, X.; Li, H.; Huo, S.; Li, Z. Dynamics and Isotherms of Water Vapor Sorption on Mesoporous Silica Gels Modified by Different Salts. Kinet. Catal. 2010, 51, 754–761. DOI: 10.1134/S0023158410050186.
  • Negishi, H.; Miyamoto, A.; Endo, A. Preparation of Thick Mesoporous Silica Coating by Electrophoretic Deposition with Binder Addition and Its Water Vapor Adsorption-Desorption Properties. Microporous Mesoporous Mater. 2013, 180, 250–256. DOI: 10.1016/j.micromeso.2013.06.040.
  • Centineo, A.; Nguyen, H. G. T.; Espinal, L.; Horn, J. C.; Brandani, S. An Experimental and Modelling Study of Water Vapour Adsorption on SBA-15. Microporous Mesoporous Mater. 2019, 282, 53–72. DOI: 10.1016/j.micromeso.2019.03.018.
  • Galarneau, A.; Nader, M.; Guenneau, F.; Di Renzo, F.; Gedeon, A. Understanding the Stability in Water of Mesoporous SBA-15 and M CM-41. J. Phys. Chem. C. 2007, 111, 8268–8277. DOI: 10.1021/jp068526e.
  • Thoruwa, T. F. N.; Johnstone, C. M.; Grant, A. D.; Smith, J. E. Novel, Low Cost CaCl2 Based Desiccants for Solar Crop Drying Applications. Renew. Energy 2000, 19, 513–520. DOI: 10.1016/S0960-1481(99)00072-5.
  • Shah, M. S.; Tsapatsis, M.; Siepmann, J. I. Hydrogen Sulfide Capture: From Absorption in Polar Liquids to Oxide, Zeolite, and Metal-Organic Framework Adsorbents and Membranes. Chem. Rev. 2017, 117, 9755–9803. DOI: 10.1021/acs.chemrev.7b00095.
  • Malamis, S.; Katsou, E. A Review on Zinc and Nickel Adsorption on Natural and Modified Zeolite, Bentonite and Vermiculite: Examination of Process Parameters, Kinetics and Isotherms. J. Hazard. Mater. 2013, 252-253, 428–461. DOI: 10.1016/j.jhazmat.2013.03.024.
  • Hernández-Montoya, V.; Pérez-Cruz, M. A.; Mendoza-Castillo, D. I.; Moreno-Virgen, M. R.; Bonilla-Petriciolet, A. Competitive Adsorption of Dyes and Heavy Metals on Zeolitic Structures. J. Environ. Manage. 2013, 116, 213–221. DOI: 10.1016/j.jenvman.2012.12.010.
  • Akgül, M.; Karabakan, A. Promoted Dye Adsorption Performance over Desilicated Natural Zeolite. Microporous Mesoporous Mater. 2011, 145, 157–164. DOI: 10.1016/j.micromeso.2011.05.012.
  • Mateen, F.; Javed, I.; Rafique, U.; Tabassum, N.; Sarfraz, M.; Safi, S. Z.; Yusoff, I.; Ashraf, M. A. New Method for the Adsorption of Organic Pollutants Using Natural Zeolite Incinerator Ash (ZIA) and Its Application as an Environmentally Friendly and Cost-Effective Adsorbent. Desalin. Water Treat 2016, 57, 6230–6238. DOI: 10.1080/19443994.2015.1005146.
  • Ates, A.; Akgül, G. Modification of Natural Zeolite with NaOH for Removal of Manganese in Drinking Water. Powder Technol. 2016, 287, 285–291. DOI: 10.1016/j.powtec.2015.10.021.
  • Djaeni, M.; Kurniasari, L.; Sasongko, S. B. Preparation of Natural Zeolite for Air Dehumidification in Food Drying. Int. J. Sci. Eng. 2015, 8, 80–83.
  • Álvarez-Ayuso, E.; García-Sánchez, A.; Querol, X. Purification of Metal Electroplating Waste Waters Using Zeolites. Water Res. 2003, 37, 4855–4862. DOI: 10.1016/j.watres.2003.08.009.
  • Cakicioglu-Ozkan, F.; Ulku, S. The Effect of HCl Treatment on Water Vapor Adsorption Characteristics of Clinoptilolite Rich Natural Zeolite. Microporous Mesoporous Mater. 2005, 77, 47–53. DOI: 10.1016/j.micromeso.2004.08.013.
  • Wahono, S. K.; Suwanto, A.; Prasetyo, D. J.; Hernawan; Jatmiko, T. H.; Vasilev, K. Plasma Activation on Natural Mordenite-Clinoptilolite Zeolite for Water Vapor Adsorption Enhancement. Appl. Surf. Sci 2019, 483, 940–946. DOI: 10.1016/j.apsusc.2019.04.033.
  • Kim, K. M.; Oh, H. T.; Lim, S. J.; Ho, K.; Park, Y.; Lee, C. H. Adsorption Equilibria of Water Vapor on Zeolite 3A, Zeolite 13X, and Dealuminated y Zeolite. J. Chem. Eng. Data 2016, 61, 1547–1554. DOI: 10.1021/acs.jced.5b00927.
  • Aprea, P.; De Gennaro, B.; Gargiulo, N.; Peluso, A.; Liguori, B.; Iucolano, F.; Caputo, D. Sr, Zn- and Cd-Exchanged Zeolitic Materials as Water Vapor Adsorbents for Thermal Energy Storage Applications. Appl. Therm. Eng 2016, 106, 1217–1224. DOI: 10.1016/j.applthermaleng.2016.06.066.
  • Djaeni, M.; Irfandy, F.; Utari, F. D. Drying Rate and Efficiency Energy Analysis of Paddy Drying Using Dehumidification with Zeolite. J. Phys: Conf. Ser. 2019, 1295, 012049. DOI: 10.1088/1742-6596/1295/1/012049.
  • Kiani, S. S.; Faiz, Y.; Farooq, A.; Ahmad, M.; Irfan, N.; Nawaz, M.; Bibi, S. Synthesis and Adsorption Behavior of Activated Carbon Impregnated with ASZM-TEDA for Purification of Contaminated Air. Diam. Relat. Mater. 2020, 108, 107916. DOI: 10.1016/j.diamond.2020.107916.
  • Ono, Y.; Futamura, R.; Hattori, Y.; Sakai, T.; Kaneko, K. Adsorption-Desorption Mediated Separation of Low Concentrated D2O from Water with Hydrophobic Activated Carbon Fiber. J. Colloid Interface Sci. 2017, 508, 14–17. DOI: 10.1016/j.jcis.2017.08.016.
  • Shalaby, C.; Ma, X.; Zhou, A.; Song, C. Preparation of Organic Sulfur Adsorbent from Coal for Adsorption of Dibenzothiophene-Type Compounds in Diesel Fuel. Energy Fuels 2009, 23, 2620–2627. DOI: 10.1021/ef801135t.
  • Huber, L.; Hauser, S. B.; Brendlé, E.; Ruch, P.; Ammann, J.; Hauert, R.; Widmer, R. N.; Ubert, C. J.; Matam, S. K.; Yoon, S.; et al. The Effect of Activation Time on Water Sorption Behavior of Nitrogen-Doped, Physically Activated, Monolithic Carbon for Adsorption Cooling. Microporous Mesoporous Mater 2019, 276, 239–250. DOI: 10.1016/j.micromeso.2018.09.025.
  • Sun, S.; Yu, Q.; Li, M.; Zhao, H.; Wu, C. Preparation of Coffee-Shell Activated Carbon and Its Application for Water Vapor Adsorption. Renew. Energy 2019, 142, 11–19. DOI: 10.1016/j.renene.2019.04.097.
  • Yu, Q.; Zhao, H.; Sun, S.; Zhao, H.; Li, G.; Li, M.; Wang, Y. Characterization of MgCl2/AC Composite Adsorbent and Its Water Vapor Adsorption for Solar Drying System Application. Renew. Energy 2019, 138, 1087–1095. DOI: 10.1016/j.renene.2019.02.024.
  • Wang, R.; Amano, Y.; Machida, M. Surface Properties and Water Vapor Adsorption-Desorption Characteristics of Bamboo-Based Activated Carbon. J. Anal. Appl. Pyrolysis 2013, 104, 667–674. DOI: 10.1016/j.jaap.2013.04.013.
  • Yu, Q.; Zhao, H.; Zhao, H.; Sun, S.; Ji, X.; Li, M.; Wang, Y. Preparation of Tobacco-Stem Activated Carbon from Using Response Surface Methodology and Its Application for Water Vapor Adsorption in Solar Drying System. Sol. Energy 2019, 177, 324–336. DOI: 10.1016/j.solener.2018.11.029.
  • Emdadi, Z.; Asim, N.; Ambar Yarmo, M.; Ebadi, M.; Mohammad, M.; Sopian, K. Chemically Treated Rice Husk Blends as Green Desiccant Materials for Industrial Application. Chem. Eng. Technol. 2017, 40, 1619–1629. DOI: 10.1002/ceat.201600105.
  • Shakouri, M.; Krishnan, E. N.; Karoyo, A. H.; Dehabadi, L.; Wilson, L. D.; Simonson, C. J. Water Vapor Adsorption-Desorption Behavior of Surfactant-Coated Starch Particles for Commercial Energy Wheels. ACS Omega. 2019, 4, 14378–14389. DOI: 10.1021/acsomega.9b00755.
  • Almarri, M.; Ma, X.; Song, C. Selective Adsorption for Removal of Nitrogen Compounds from Liquid Hydrocarbon Streams over Carbon- and Alumina-Based Adsorbents. Ind. Eng. Chem. Res. 2009, 48, 951–960. DOI: 10.1021/ie801010w.
  • Lestari, A. Y. D.; Djaeni, M.; Fuadi, A. M. Modified Starch of Amorphophallus Campanulatus as a Novel Adsorbent for Water Adsorption. Reaktor 2016, 16, 9–16. DOI: 10.14710/reaktor.16.1.9-22.
  • Anderson, L. E.; Gulati, M.; Westgate, P. J.; Kvam, E. P.; Bowman, K.; Ladisch, M. R. Synthesis and Optimization of a New Starch-Based Adsorbent for Dehumidification of Air in a Pressure-Swing Dryer. Ind. Eng. Chem. Res. 1996, 35, 1180–1187. DOI: 10.1021/ie9504213.
  • Brunauer, S. The Adsorption of Gases and Vapor. Nature 1945, 155, 154–155.
  • Chang, K. S.; Wang, H. C.; Chung, T. W. Effect of Regeneration Conditions on the Adsorption Dehumidification Process in Packed Silica Gel Beds. Appl. Therm. Eng. 2004, 24, 735–742. DOI: 10.1016/j.applthermaleng.2003.11.003.
  • La, D.; Dai, Y. J.; Li, Y.; Wang, R. Z.; Ge, T. S. Technical Development of Rotary Desiccant Dehumidification and Air Conditioning: A Review. Renew. Sustain. Energy Rev. 2010, 14, 130–147. DOI: 10.1016/j.rser.2009.07.016.
  • Lodewyckx, P.; Raymundo-Piñero, E.; Vaclavikova, M.; Berezovska, I.; Thommes, M.; Béguin, F.; Dobos, G. Suggested Improvements in the Parameters Used for Describing the Low Relative Pressure Region of the Water Vapour Isotherms of Activated Carbons. Carbon N. Y 2013, 60, 556–558. DOI: 10.1016/j.carbon.2013.04.006.
  • Djaeni, M.; Ayuningtyas, D.; Asiah, N.; Hargono, H.; Ratnawati, R.; Wiratno, W.; Jumali, J. Paddy Drying in Mixed Adsorption Dryer with Zeolite: Drying Rate and Time Estimation. Reaktor 2013, 14, 173. DOI: 10.14710/reaktor.14.3.173-178.
  • Sasongko, S. B.; Hadiyanto, H.; Djaeni, M.; Perdanianti, A. M.; Utari, F. D. Effects of Drying Temperature and Relative Humidity on the Quality of Dried Onion Slice. Heliyon 2020, 6, (June), e04338. DOI: 10.1016/j.heliyon.2020.e04338.
  • Brunauer, S.; Emmett, P. H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. DOI: 10.1021/ja01269a023.
  • van den Berg, C.; Bruin, S. Water Activity and Its Estimation in Food Systems: Theoretical Aspects; Academic Press, Inc.: New York, 1981. DOI: 10.1016/b978-0-12-591350-8.50007-3.
  • Feng, D.; Li, X.; Wang, X.; Li, J.; Sun, F.; Sun, Z.; Zhang, T.; Li, P.; Chen, Y.; Zhang, X. Water Adsorption and Its Impact on the Pore Structure Characteristics of Shale Clay. Appl. Clay Sci. 2018, 155, 126–138. DOI: 10.1016/j.clay.2018.01.017.
  • Halsey, G. Physical Adsorption on Non-Uniform Surfaces. J. Chem. Phys. 1948, 16, 931–937. DOI: 10.1063/1.1746689.
  • Smith, S. E. The Sorption of Water Vapor by High Polymers. J. Am. Chem. Soc. 1947, 69, 646–651. DOI: 10.1021/ja01195a053.
  • Oswin, C. R. The Kinetics of Package Life. III. The Isotherm. J. Chem. Technol. Biotechnol. 1946, 65, 419–421. DOI: 10.1002/jctb.5000651216.
  • Menon, A.; Stojceska, V.; Tassou, S. A. A Systematic Review on the Recent Advances of the Energy Efficiency Improvements in Non-Conventional Food Drying Technologies. Trends Food Sci. Technol. 2020, 100, 67–76. DOI: 10.1016/j.tifs.2020.03.014.
  • Attkan, A. K.; Kumar, N.; Yadav, Y. K. Performance Evaluation of a Dehumidifier Assisted Low Temperature Based Food Drying System. Iosrjestft. 2014, 8, 43–49. DOI: 10.9790/2402-08154349.
  • Djaeni, M.; Prasetyaningrum, A.; Sasongko, S. B.; Widayat, W.; Hii, C. L. Application of Foam-Mat Drying with Egg White for Carrageenan: Drying Rate and Product Quality Aspects. J. Food Sci. Technol. 2015, 52, 1170–1175. DOI: 10.1007/s13197-013-1081-0.
  • Luthra, K.; Sadaka, S. 2019 Effects of Air Dehumidification on the Performance of a Fluidized Bed Dryer and the Rice Quality. 2019 ASABE Annu. Int. Meet., 1–10. DOI: 10.13031/aim.201900322.
  • Witinantakit, K.; Prachayawarakorn, S.; Nathakaranakule, A.; Soponronnarit, S. Paddy Drying Using Adsorption Technique: Experiments and Simulation. Dry. Technol. 2006, 24, 609–617. DOI: 10.1080/07373930600626503.
  • Samborska, K.; Jedlińska, A.; Wiktor, A.; Derewiaka, D.; Wołosiak, R.; Matwijczuk, A.; Jamróz, W.; Skwarczyńska-Maj, K.; Kiełczewski, D.; Błażowski, Ł.; et al. The Effect of Low-Temperature Spray Drying with Dehumidified Air on Phenolic Compounds, Antioxidant Activity, and Aroma Compounds of Rapeseed Honey Powders. Food Bioprocess Technol. 2019, 12, 919–932. DOI: 10.1007/s11947-019-02260-8.
  • Woo, C. L.; Yeoh, H. S.; Go, S. K.; Chong, G. H. Green Drying: Continuous Dehumidified-Air Dryer. EJ. 2014, 18, 119–126. DOI: 10.4186/ej.2014.18.2.119.
  • Venkatachalam, S. K.; Thottipalayam Vellingri, A.; Selvaraj, V. Low-Temperature Drying Characteristics of Mint Leaves in a Continuous-Dehumidified Air Drying System. J. Food Process Eng. 2020, 43, 1–15. DOI: 10.1111/jfpe.13384.
  • Amankwah, E.; Kyere, G.; Kyeremateng, H.; van Boxtel, A. Experimental Verification of Yam (Dioscorea Rotundata) Drying with Solar Adsorption Drying. Appl. Sci. 2019, 9, 3927. DOI: 10.3390/app9183927.
  • Menon, A. S.; Hii, C. L.; Law, C. L.; Shariff, S.; Djaeni, M. Effects of Drying on the Production of Polyphenol-Rich Cocoa Beans. Dry. Technol. 2017, 35, 1799–1806. DOI: 10.1080/07373937.2016.1276072.
  • Rahman, S. M. A.; Mujumdar, A. S. A Novel Atmospheric Freeze-Drying System Using a Vibro-Fluidized Bed with Adsorbent. Dry. Technol 2008, 26, 393–403. DOI: 10.1080/07373930801928914.
  • Cam, I. B.; Basunal Gulmez, H.; Eroglu, E.; Topuz, A. Strawberry Drying: Development of a Closed-Cycle Modified Atmosphere Drying System for Food Products and the Performance Evaluation of a Case Study. Dry. Technol. 2018, 36, 1460–1473. DOI: 10.1080/07373937.2017.1409233.
  • Atuonwu, J. C.; Jin, X.; van Straten, G.; Deventer Antonius, H. C.; van; van Boxtel, J. B. Reducing Energy Consumption in Food Drying: Opportunities in Desiccant Adsorption and Other Dehumidification Strategies. Proc. Food Sci. 2011, 1, 1799–1805. DOI: 10.1016/j.profoo.2011.09.264.
  • Mitra, J.; Shrivastava, S. L.; Rao, P. S. Onion Dehydration: A Review. J. Food Sci. Technol. 2012, 49, 267–277. DOI: 10.1007/s13197-011-0369-1.
  • Djaeni, M.; Bernadi, I.; Wijayanti, M. P.; Utari, F. D. 2020 Drying Rate of Onion (Allium cepa L.) Drying Using Air Dehumidification with Silica Gel. AIP Conf. Proc., 2197 (January). DOI: 10.1063/1.5140911.
  • Asiah, N.; Djaeni, M.; Hii, C. L. Moisture Transport Mechanism and Drying Kinetic of Fresh Harvested Red Onion Bulbs under Dehumidified Air. Int. J. Food Eng. 2017, 13, 1–8. DOI: 10.1515/ijfe-2016-0401.
  • Djaeni, M.; Arifin, U. F. Kinetics of Thiamine and Color Degradation in Onion Drying under Various Temperatures. Adv. Sci. Lett. 2017, 23, 5772–5774. DOI: 10.1166/asl.2017.8828.
  • Djaeni, M.; Asiah, N.; Wibowo, Y. P.; Yusron, D. A. A. 2016 Quality Evaluation of Onion Bulbs during Low Temperature Drying. AIP Conf. Proc., 1737. DOI: 10.1063/1.4949317.
  • Luthra, K.; Sadaka, S. Investigation of Rough Rice Drying in Fixed and Fluidized Bed Dryers Utilizing Dehumidified Air as a Drying Agent. Dry. Technol. 2020, 1–15. DOI: 10.1080/07373937.2020.1741606.
  • Kirov, G.; Petrova, N.; Stanimirova, T. Matching of the Water States of Products and Zeolite during Contact Adsorption Drying. Dry. Technol. 2017, 35, 2015–2020. DOI: 10.1080/07373937.2017.1295386.
  • Acar, C.; Dincer, I.; Mujumdar, A. A Comprehensive Review of Recent Advances in Renewable-Based Drying Technologies for a Sustainable Future. Dry. Technol. 2020, 1–27. DOI: 10.1080/07373937.2020.1848858.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.